l											FOR	M2		
						TATE OF UTAH TOF NATURAL RES	SOURC	CES		AMENIDE	FOR ED REPORT			
						OF OIL, GAS AND I				AMENDE	EDREPOR			
			DDI ICATION	FOR BERI	MIT TO DDILL			·	I. WELL NAME and N	JMBER				
2. TYPE O	E WORK		APPLICATION	FUR PERI	WIT TO DRILL				Dart 15-10-3-2WH					
2. 11110	- WORK	DRILL NEW WEL	L REENT	ER P&A WEL	L DEEPEN	WELL (3. FIELD OR WILDCAT NORTH MYTON BENCH					
4. TYPE O	F WELL		Oil Well	Coalbed Met	thane Well: NO				5. UNIT or COMMUNITIZATION AGREEMENT NAME					
6. NAME C	F OPERATOR		NEWFIELD PI	RODUCTION	COMPANY				7. OPERATOR PHONE	435 646-	-4825			
8. ADDRES	SS OF OPERAT	OR	Rt 3 Box 36					9	O. OPERATOR E-MAIL					
	AL LEASE NUN		111 0 201 00		IINERAL OWNERS	SHIP	_		12. SURFACE OWNER		Wildia.com			
	., INDIAN, OR S	Patented		FE	DERAL INC	DIAN () STATE) I	FEE 🗓		DIAN 🔵	STATE		E (<u>())</u>	
		OWNER (if box 1	Ďart Hom	nestead Ran	ch, Inc.				14. SURFACE OWNER	435-722	-7087	·		
15. ADDRI	ESS OF SURFA	ACE OWNER (if bo	x 12 = 'fee') Route 2, Box 2	044, Roosev	relt, UT 84066				16. SURFACE OWNE	R E-MAIL (if box 12 :	= 'fee')		
	N ALLOTTEE O = 'INDIAN')	R TRIBE NAME			NTEND TO COMN TIPLE FORMATIO	IINGLE PRODUCTIONS	N FRO	M	19. SLANT					
	,			YE	S (Submit C	Commingling Applica	tion)	NO 🗓	VERTICAL DIF	RECTIONAL	. 🔵 но	ORIZONT	AL 📵	
20. LOCA	TION OF WEL	L		FOOTAG	SES	QTR-QTR		SECTION	TOWNSHIP	RAN	NGE	ME	RIDIAN	
LOCATIO	N AT SURFAC	E		368 FSL 23	11 FEL	SWSE		10	3.0 S	2.0	W		U	
Top of U	ppermost Pro	ducing Zone		660 FSL 19	80 FEL	SWSE		10	3.0 S	2.0	W		U	
At Total	Depth		(660 FNL 19	80 FEL	NWNE		10	3.0 S	2.0	W		U	
21. COUN	TY	DUCHESNE		22. D	ISTANCE TO NEA	REST LEASE LINE (Feet)	:	23. NUMBER OF ACRI	ES IN DRIL 40	LING UNIT	-		
					ISTANCE TO NEA		E POOI	L ;	26. PROPOSED DEPTI		TVD: 912	5		
27. ELEV <i>A</i>	TION - GROU	ND LEVEL		28. E	OND NUMBER	30			29. SOURCE OF DRIL	LING WATI	ER /			
		5345				B001834			WATER RIGHTS APPR		IBER IF AP	PLICABL	E	
			7	7'>	Hole, Casing	, and Cement Inf	ormat	tion						
String	Hole Size	Casing Size	Length	Weight	Grade & Thr	ead Max Mud	Wt.		Cement		Sacks	Yield	Weight	
COND	24	20	0 - 60	0.0	Unknown				Class G		57 120	1.17	15.8	
SURF				54.5	J-55 ST&0	C 8.4			Varocem			3.33	11.0	
	17.5	13.375	0 - 1300		0 00 0 1 0.	Varocem						1 0		
1				40.0		ess 10.5		Halliburto	Varocem	known	420	1.9	13.0	
11	12.25	9.625	0 - 8405	40.0	N-80 Buttre	ess 10.5		Halliburto		known		1.9 3.53 1.29	11.0	
PROD				40.0				Halliburto	Varocem on Light , Type Unl	known	420 678	3.53	11.0	
	12.25	9.625	0 - 8405		N-80 Buttre P-110 Oth			Halliburto	Varocem on Light , Type Unl 50/50 Poz	known	420 678 492	3.53 1.29	11.0 14.0	
	12.25 8.75	9.625	0 - 8405	20.0	N-80 Buttre	TTACHMENTS	AH OI		Varocem on Light , Type Unl 50/50 Poz		420 678 492 1327	3.53 1.29	11.0 14.0	
PROD	12.25 8.75 VE	9.625	0 - 8405 0 - 13297 DWING ARE A	20.0	N-80 Buttre P-110 Oth A IN ACCORDAN	TTACHMENTS			Varocem on Light , Type Uni 50/50 Poz 50/50 Poz		420 678 492 1327	3.53 1.29	11.0 14.0	
PROD W	12.25 8.75 VEF	9.625 5.5 RIFY THE FOLL	0 - 8405 0 - 13297 DWING ARE A	20.0	N-80 Buttre P-110 Oth A IN ACCORDAN ENGINEER	TTACHMENTS NCE WITH THE UT	MPLETE	IL AND GAS (Varocem on Light , Type Uni 50/50 Poz 50/50 Poz	ENERAL	420 678 492 1327	3.53 1.29	11.0 14.0	
PROD	12.25 8.75 VEF	9.625 5.5 RIFY THE FOLL	0 - 8405 0 - 13297 DWING ARE A	20.0 ATTACHED RVEYOR OR EMENT (IF F	N-80 Buttre P-110 Oth A IN ACCORDAN ENGINEER FEE SURFACE)	TTACHMENTS NCE WITH THE UT FOR	MPLETE	IL AND GAS (Varocem on Light , Type Unit 50/50 Poz 50/50 Poz CONSERVATION G	ENERAL	420 678 492 1327	3.53 1.29	11.0 14.0	
PROD W AF	12.25 8.75 VEF ELL PLAT OR N FIDAVIT OF ST.	9.625 5.5 RIFY THE FOLL MAP PREPARED BY ATUS OF SURFACE	0 - 8405 0 - 13297 DWING ARE A	20.0 ATTACHED RVEYOR OR EMENT (IF F	N-80 Buttre P-110 Oth A IN ACCORDAN ENGINEER EEE SURFACE) NTALLY DRILLED	TTACHMENTS NCE WITH THE UT FOR TOP	MPLETE	IL AND GAS (E DRILLING PL OPERATOR IS	Varocem on Light , Type Unit 50/50 Poz 50/50 Poz CONSERVATION G AN	ENERAL	420 678 492 1327	3.53 1.29	11.0 14.0	
PROD W AF NAME DO	12.25 8.75 VEF ELL PLAT OR M FIDAVIT OF ST. RECTIONAL SU on Hamilton	9.625 5.5 RIFY THE FOLL MAP PREPARED BY ATUS OF SURFACE	0 - 8405 0 - 13297 DWING ARE A	20.0 ATTACHED RVEYOR OR EMENT (IF F	N-80 Buttre P-110 Oth A IN ACCORDAN ENGINEER FEE SURFACE) NTALLY DRILLED TITLE Permitti	TTACHMENTS NCE WITH THE UT FOR TOP	MPLETE	IL AND GAS (E DRILLING PL OPERATOR IS	Varocem on Light , Type Unit 50/50 Poz 50/50 Poz CONSERVATION G AN OTHER THAN THE LE	ENERAL EASE OWN	420 678 492 1327	3.53 1.29	11.0 14.0	
PROD W AF	12.25 8.75 VEF ELL PLAT OR M FIDAVIT OF ST. RECTIONAL SU on Hamilton	9.625 5.5 RIFY THE FOLL MAP PREPARED BY ATUS OF SURFACE	0 - 8405 0 - 13297 DWING ARE A	20.0 ATTACHED RVEYOR OR EMENT (IF F	N-80 Buttre P-110 Oth A IN ACCORDAN ENGINEER EEE SURFACE) NTALLY DRILLED	TTACHMENTS NCE WITH THE UT FOR TOP	MPLETE	IL AND GAS (E DRILLING PL OPERATOR IS	Varocem on Light , Type Unit 50/50 Poz 50/50 Poz CONSERVATION G AN	ENERAL EASE OWN	420 678 492 1327	3.53 1.29	11.0 14.0	
PROD W AF NAME DO SIGNATU API NUMI	12.25 8.75 VEF ELL PLAT OR M FIDAVIT OF ST. RECTIONAL SU on Hamilton	9.625 5.5 RIFY THE FOLL MAP PREPARED BY ATUS OF SURFAC	0 - 8405 0 - 13297 DWING ARE A	20.0 ATTACHED RVEYOR OR EMENT (IF F	N-80 Buttre P-110 Oth A IN ACCORDAN ENGINEER FEE SURFACE) NTALLY DRILLED TITLE Permitti	TTACHMENTS NCE WITH THE UT FOR TOP	MPLETE	IL AND GAS (E DRILLING PL OPERATOR IS	Varocem on Light , Type Unit 50/50 Poz 50/50 Poz CONSERVATION G AN OTHER THAN THE LE	ENERAL EASE OWN	420 678 492 1327	3.53 1.29	11.0 14.0	

Newfield Production Company 15-10-3-2WH

Surface Hole Location: 368' FSL, 2311' FEL, Section 10, T3S, R2W Bottom Hole Location: 660' FNL, 1980' FEL, Section 10, T3S, R2W Duchesne County, UT

Drilling Program

1. Formation Tops

Uinta surface
Green River 3,706'
Garden Gulch member 6,644'
Uteland Butte member 8,832'

Lateral TD 9,125' TVD / 13,297' MD

2. Depth to Oil, Gas, Water, or Minerals

Base of moderately saline 1,379' (water)
Green River 6,644' - 8,832' (oil)
Uteland Butte member 8,832' - 9,125' (oil)

3. Pressure Control

Section BOP Description

Surface 12-1/4" Diverter

Intermediate The BOP and related equipment shall meet the minimum requirements of Onshore

Oil and Gas Order No. 2 for equipment and testing requirements, procedures, etc for

a 5M system.

Prod/Prod Liner The BOP and related equipment shall meet the minimum requirements of Onshore

Oil and Gas Order No. 2 for equipment and testing requirements, procedures, etc for

a 5M system.

A 5M BOP system will consist of 2 ram preventers (double or two singles) and an annular preventer (see attached diagram). A choke manifold rated to at least 5,000

psi will be used

4. Casing

	Interval		Weight			Pore Press	MW @	Frac	Safety Factors				
Description	Тор	Bottom (TVD/MD)	(ppf)	Grade	Coup	@ Shoe	Shoe	Grad @ Shoe	Burst	Collapse	Tension		
Conductor	0'	60'			Weld								
20	0	00			weid								
Surface	01	0'	0'	1,500'	£ 4 £	J-55	STC	8.33	8.4	1.4	2,730	1,130	514,000
13 3/8	0	1,500	54.5	1-33	SIC	8.33	8.4	14	2.68	2.24	6.29		
Intermediate	0'	8,381'	40	N 90	ВТС	10	10.5	15	5,750	3,090	916,000		
9 5/8	0	8,405'	40	N-80	ыс	10	10.5	15	1.09	1.35	2.73		
Production	01	9,125'	20 P-110	D 110		1.4	145	16	12,360	11,080	641,000		
5 1/2	0'	13,297'		BTC	14	14.5	16	2.16	1.86	2.41			

Assumptions:

Surface casing MASP = (frac gradient + 1.0 ppg) - (gas gradient)

Intermediate casing MASP = (reservoir pressure) - (gas gradient)

Production casing MASP = (reservoir pressure) - (gas gradient)

Intermediate collapse calculations assume 50% evacuated

Maximum intermediate csg collapse load assumes loss of mud to a fluid level of

4,191'

Intermediate csg run from surface to

8,381' and will not experience full evacuation

Production csg run from surface to TD will isolate intermediate csg from production loads

Production csg withstands burst and collapse loads for anticipated production conditions

Surface & production collapse calcs assume fully evacuated casing w/a gas gradient

All tension calculations assume air weight of casing

Gas gradient = 0.1 psi/ft

All casing shall be new.

All casing strings shall have a minimum of 1 centralizer on each of the bottom 3 joints.

5. Cement

Job	Hole Size	Fill	Slurry Description	ft ³	OH excess	Weight (ppg)	Yield (ft³/sk)
Conductor	24	60'	Class G w/ 2% KCl + 0.25 lbs/sk Cello Flake	66 57	15%	15.8	1.17
Surface Lead	17 1/2	500'	Varicem (Type III) + .125 lbs/sk Cello Flakes	399 120	15%	11.0	3.33
Surface Tail	17 1/2	1,000'	Varicem (Type III) + .125 lbs/sk Cello Flakes	799 420	15%	13.0	1.9
Intermediate Lead	12 1/4	6,644'	HLC Premium - 35% Poz/65% Glass G + 10% bentonite	2393 678	15%	11.0	3.53
Intermediate Tail	12 1/4	1,761'	50/50 Poz/Class G + 1% bentonite	634 492	15%	14.0	1.29
Production Lead	8 3/4	0'	HLC Premium - 35% Poz/65% Glass G + 10% bentonite	0	15%	11.0	3.53
Production Tail	8 3/4	5,892'	50/50 Poz/Class G + 1% bentonite	1712 1327	15%	14.0	1.29

The surface casing will be cemented to surface. In the event that cement does not reach surface during the primary cement job, a remedial job will be performed.

Actual cement volumes for the intermediate casing string will be calculated from an open hole caliper log, plus 15% excess.

The 5.5" production string will be run from surface to TD and cemented to setback. The cement slurries will be adjusted for hole conditions and blend test results. The lateral will be cemented past the setback.

This well will not be perforated or produced outside the legal setbacks

6. Type and Characteristics of Proposed Circulating Medium

Interval Description

Surface - 1,500'

An air and/or fresh water system will be utilized. If an air rig is used, the blooie line discharge may be less than 100' from the wellbore in order to minimize location size. The blooie line is not equipped with an automatic igniter. The air compressor may be located less than 100' from the well bore due to the low possibility of combustion with the air/dust mixture. Water will be on location to be used as kill fluid, if necessary.

1,500' - 8,405'

A water based mud: Hole stability may be improved with additions of KCl or a similar inhibitive substance. In order to control formation pressure the system will be weighted with additions of bentonite, and if conditions warrant, with barite.

Anticipated maximum mud weight is 10.5 ppg.

8,405' - TD

One of two possible mud systems may be used depending on offset well performance on ongoing wells:

A water based mud: Hole stability may be improved with additions of KCl or a similar inhibitive substance. In order to control formation pressure the system will be weighted with additions of bentonite, and if conditions warrant, with barite.

-or-

A diesel based OBM system: with an oil to water ratio between 70/30 and 80/20. Emulsifiers and wetting agents will be used to maintain adequate mud properties. A water phase salinity will be maintained in the range of 25% using CaCl (Calcium Chloride). All cuttings will be dried and centrifuged so that they can be easily transferred to a lined cuttings pit with little to no free fluid on them. The cuttings will be mixed with fly ash prior to transportation to a location on Newfield owned surface. Once on Newfield owned surface, the cuttings will be treated with the previously approved FIRMUS process and used as a construction material on future location and/or roads on Newfield owned surface. The cuttings may also be transported to a state approved disposal facility.

Anticipated maximum mud weight is 14.5 ppg.

7. Logging, Coring, and Testing

Logging:

A dual induction, gamma ray, and caliper log will be run from KOP to the base of the surface casing. A compensated neutron/formation density log will be run from TD to the top of the Garden Gulch formation. A cement bond log will be run from KOP to the cement top behind the production casing and or intermediate casing.

Cores: As deemed necessary.

DST: There are no DST's planned for this well.

8. Anticipated Abnormal Pressure or Temperature

Maximum anticipated bottomhole pressure will be approximately equal to total depth (feet) multiplied by a 0.73 psi/ft gradient.

$$9,125' \text{ x}$$
 0.73 psi/ft = 6643 psi

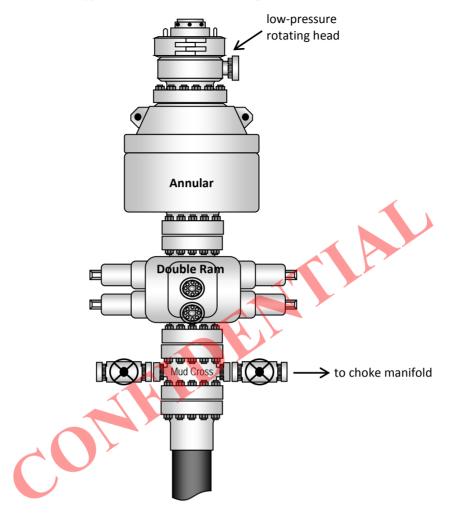
No abnormal temperature is expected. No H₂S is expected.

9. Other Aspects

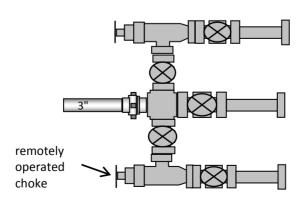
The lateral of this well will target the Uteland Butte member of the Green River formation

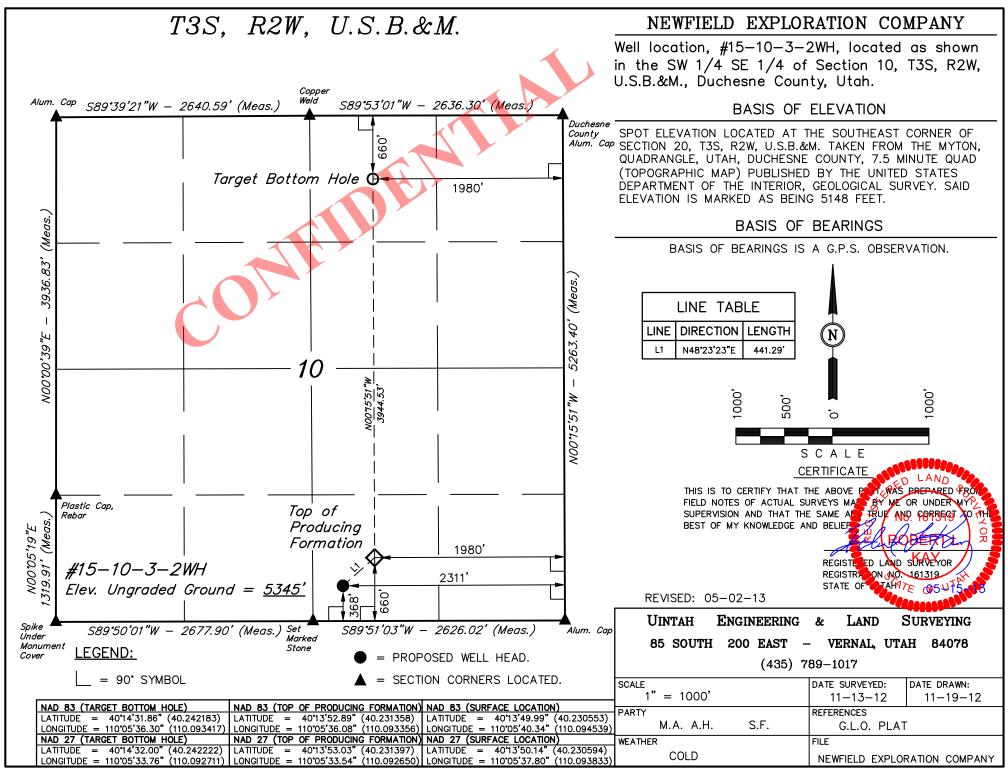
After setting 9-5/8" casing, an 8-3/4" vertical hole will be drilled to a kick off point of 8,405'

Directional tools will then be used to build to 87.17 degrees inclination.

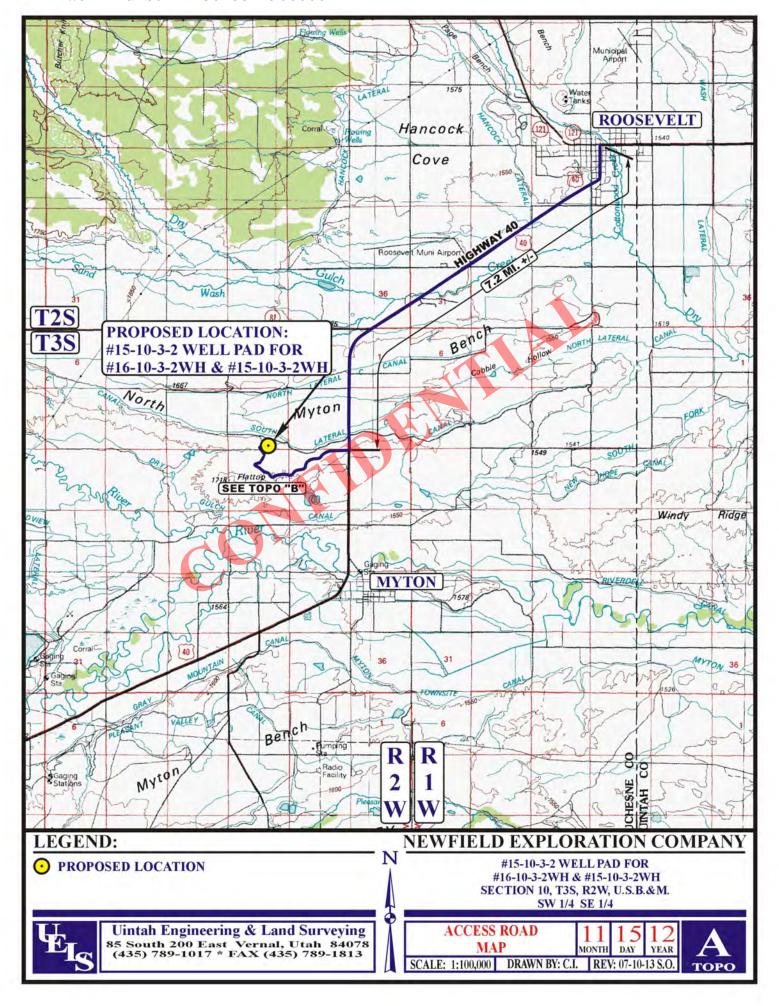

The lateral will be drilled to the bottomhole location shown on the plat. A 5-1/2" longstring will be run from surface to TD and cemented in place.

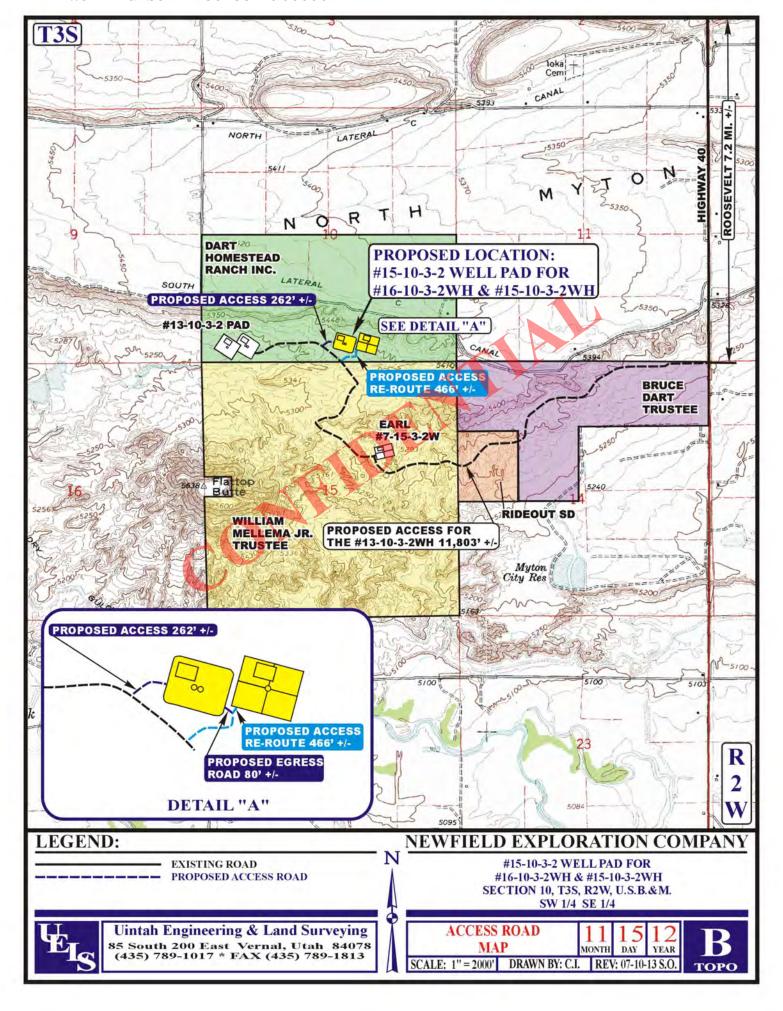
Newfield requests the following variances from Onshore Order #2:

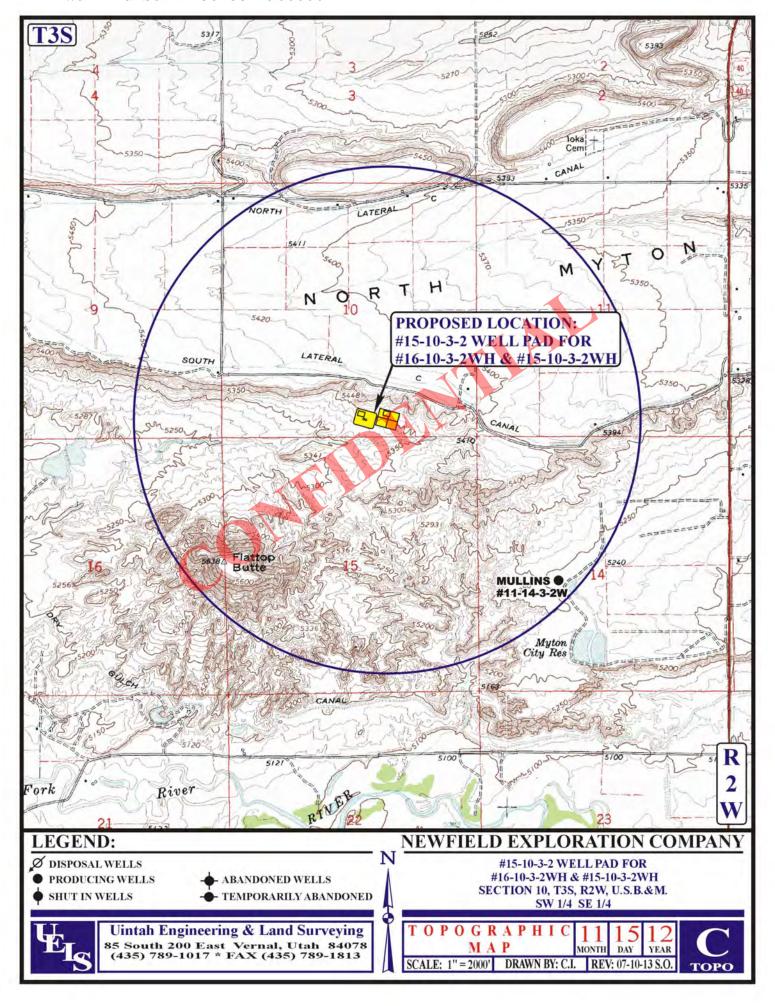

Variance from Onshoer Order #2, III.E.1
 Refer to Newfield Production Company Standard Operating Practices "Ute Tribal Green River Development Program" paragraph 9.0

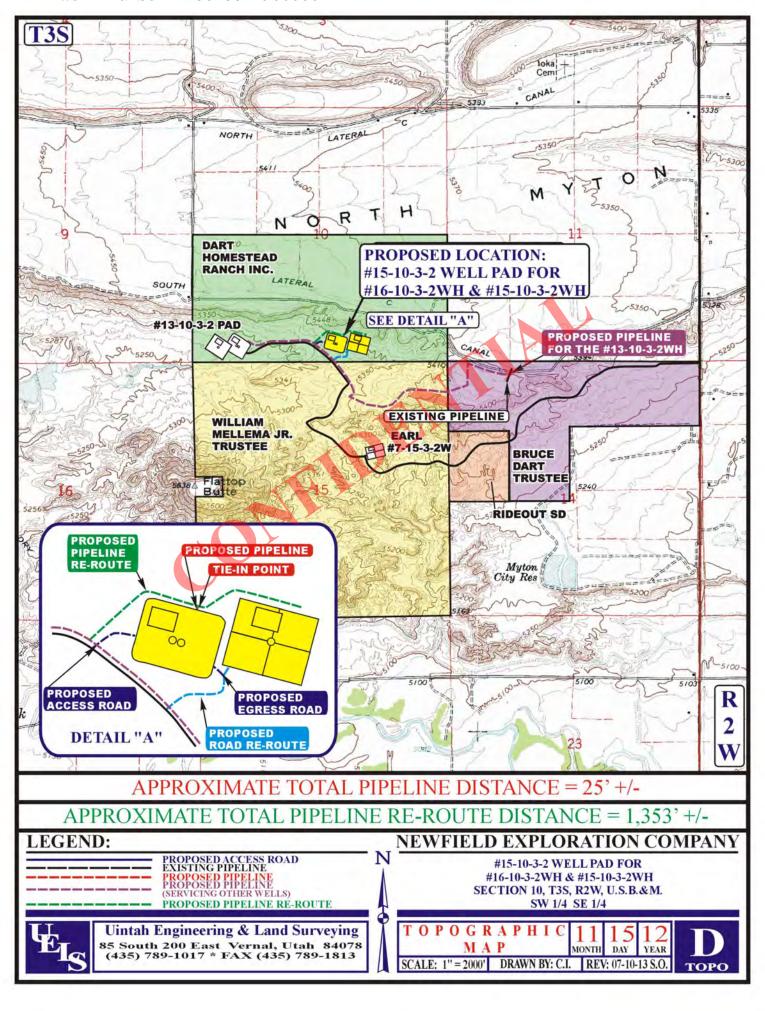

If oil based mud (OBM) is used and If Newfield owns the surface rights on the same drilling site at a location where construction is desired, the cuttings may be used for construction by a Firmus® process at that location. Otherwise, after the cuttings have been made safe for transport as described in paragraph 6, they will be transported to another location on which Newfield owns surface rights and there mixed, as part of a Firmus® process, with at least one additional chemical that will convert them to a temporarily uncured cementitious mixture that will be placed and shaped into a temporary desired final structure that will spontaneously harden within seven days after placement to form the desired structure. Samples of the temporary desired final structure may be taken for testing as described below (after the samples have hardened), or samples of the starting pretreated cuttings and mud will be taken during the construction and later mixed in a laboratory, molded, and cured to simulate the final structure as well as reasonably possible. Either these laboratory-made simulations of the final structure or samples of the temporary mixture itself after hardening, will be mechanically tested directly to determine their unconfined compressive strength and their hydraulic conductivity. Leachates of the mechanically tested structures themselves or of finer particles made by crushing and size-grading of the mechanically tested structures themselves to a specified particle size range will be analyzed, according to specified methods, for their contents of arsenic, barium, cadmium, chromium, lead, mercury, selenium, silver, zinc, benzene, total petroleum hydrocarbons (TPH), and chlorides, and the pH of these leachates will also be measured. The results of all these tests will be reported by Newfield to UDOGM at intervals as requested, along with the latitude and longitude (or other comparable location data) of the site of the useful constructions built.

Typical 5M BOP stack configuration




Typical 5M choke manifold configuration





RECEIVED: July 12, 2013



LEAM Drilling Systems, Inc. FOR

NEWFIELD EXPLORATION ROCKY MOUNTAINS WELL: 15-10-3-2WH (PLAN: REV00)

DUCHESNE COUNTY, UTAH RIG NAME: RIG (KB= 18') MAY 23, 2013 -- WELL PLAN PLOT

Planning Report

Database: EDM 5000.1 Lynn Db

Company: **NEWFIELD EXPLORATION ROCKY**

MOUNTAINS

DUCHESNE COUNTY, UT (NAD 83) Project:

Site: CENTRAL BASIN (NAD 83)

Well: 15-10-3-2WH Wellbore: 15-10-3-2WH Design: 15-10-3-2WH REV00 Local Co-ordinate Reference:

TVD Reference:

MD Reference:

North Reference:

Survey Calculation Method:

Well 15-10-3-2WH

WELL(5346'+18'= 5,364' MSL) @ 5364.00usft

(RIG (KB= 18'))

WELL(5346'+18'= 5,364' MSL) @ 5364.00usft

(RIG (KB= 18'))

True

Minimum Curvature

Project DUCHESNE COUNTY, UT (NAD 83),

Map System: US State Plane 1983 North American Datum 1983

Geo Datum:

Utah Central Zone Map Zone:

System Datum: Mean Sea Level

CENTRAL BASIN (NAD 83) Site

Northing: 7,254,409.48 usft Site Position: Latitude: From: Lat/Long Easting: 1,986,891.62 usft Longitude:

Position Uncertainty: 0.00 usft **Slot Radius:** 13-3/16 " **Grid Convergence:**

0.00

40° 13' 43.080 N 110° 15' 32.490 W

0.79°

Well 15-10-3-2WH, Sec. 10, T3S-R2W,

Well Position 736.14 usft 7,255,782.78 usft 40° 13' 49.938 N +N/-S Northing: Latitude:

2,032,807.24 usft +E/-W 45.930.26 usft Easting: Longitude: 110° 5' 40.259 W

Position Uncertainty 0.00 usft Wellhead Elevation: 5.364.00 usft Ground Level: 5.346.00 usft

Wellbore 15-10-3-2WH

Sample Date Declination Field Strength Magnetics **Model Name Dip Angle** (°) (°) (nT)

IGRF2010 5/23/2013 11.11 65.89 52,176

0.00

Design 15-10-3-2WH REV00

Audit Notes:

Version: REV00 **PLAN** Tie On Depth: 0.00 Phase:

+N/-S +E/-W Direction **Vertical Section:** Depth From (TVD) (usft) (usft) (usft) (°)

0.00

Plan Sections	s									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	TFO (°)	Target
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
2,500.00	0.00	0.00	2,500.00	0.00	0.00	0.00	0.00	0.00	0.00	
2,800.01	6.00	136.51	2,799.46	-11.39	10.80	2.00	2.00	0.00	136.51	
7,114.72	6.00	136.51	7,090.54	-338.61	321.20	0.00	0.00	0.00	0.00	
7,414.73	0.00	0.00	7,390.00	-350.00	332.00	2.00	-2.00	0.00	180.00	
8,405.73	0.00	0.00	8,381.00	-350.00	332.00	0.00	0.00	0.00	0.00	
9,170.92	84.17	0.00	8,899.18	117.96	332.00	11.00	11.00	0.00	0.00	
9,355.92	84.17	0.00	8,917.97	302.01	332.00	0.00	0.00	0.00	0.00	
9,555.92	84.17	0.00	8,938.28	500.97	332.00	0.00	0.00	0.00	0.00	
9,657.88	87.17	359.40	8,945.98	602.64	331.47	3.00	2.94	-0.59	-11.30	
13,297.89	87.17	359.40	9,125.70	4,238.00	293.40	0.00	0.00	0.00	0.00	TD-PBHL (15-10-3

0.00

Database: EDM 5000.1 Lynn Db

Company: NEWFIELD EXPLORATION ROCKY

MOUNTAINS

Project: DUCHESNE COUNTY, UT (NAD 83)

Site: CENTRAL BASIN (NAD 83)

 Well:
 15-10-3-2WH

 Wellbore:
 15-10-3-2WH

 Design:
 15-10-3-2WH REV00

Local Co-ordinate Reference:

TVD Reference:

MD Reference:

North Reference: Survey Calculation Method: Well 15-10-3-2WH

WELL(5346'+18'= 5,364' MSL) @ 5364.00usft

(RIG (KB= 18'))

WELL(5346'+18'= 5,364' MSL) @ 5364.00usft

(RIG (KB= 18'))

True

nned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
100.00	0.00	0.00	100.00	0.00	0.00	0.00	0.00	0.00	0.00
200.00	0.00	0.00	200.00	0.00	0.00	0.00	0.00	0.00	0.00
300.00	0.00	0.00	300.00	0.00	0.00	0.00	0.00	0.00	0.00
400.00	0.00	0.00	400.00	0.00	0.00	0.00	0.00	0.00	0.00
500.00	0.00	0.00	500.00	0.00	0.00	0.00	0.00	0.00	0.00
600.00	0.00	0.00	600.00	0.00	0.00	0.00	0.00	0.00	0.00
700.00	0.00	0.00	700.00	0.00	0.00	0.00	0.00	0.00	0.00
800.00	0.00	0.00	800.00	0.00	0.00	0.00	0.00	0.00	0.00
900.00	0.00	0.00	900.00	0.00	0.00	0.00	0.00	0.00	0.00
1,000.00	0.00	0.00	1,000.00	0.00	0.00	0.00	0.00	0.00	0.00
1,100.00	0.00	0.00	1,100.00	0.00	0.00	0.00	0.00	0.00	0.00
1,200.00	0.00	0.00	1,200.00	0.00	0.00	0.00	0.00	0.00	0.00
1,300.00	0.00	0.00	1,300.00	0.00	0.00	0.00	0.00	0.00	0.00
1,400.00	0.00	0.00	1,400.00	0.00	0.00	0.00	0.00	0.00	0.00
1,500.00	0.00	0.00	1,500.00	0.00	0.00	0.00	0.00	0.00	0.00
1,600.00	0.00	0.00	1,600.00	0.00	0.00	0.00	0.00	0.00	0.00
1,700.00	0.00	0.00	1,700.00	0.00	0.00	0.00	0.00	0.00	0.00
1,800.00	0.00	0.00	1,800.00	0.00	0.00	0.00	0.00	0.00	0.00
1,900.00	0.00	0.00	1,900.00	0.00	0.00	0.00	0.00	0.00	0.00
2,000.00	0.00	0.00	2,000.00	0.00	0.00	0.00	0.00	0.00	0.00
2,100.00	0.00	0.00	2,100.00	0.00	0.00	0.00	0.00	0.00	0.00
2,200.00	0.00	0.00	2,200.00	0.00	0.00	0.00	0.00	0.00	0.00
2,300.00	0.00	0.00	2,300.00	0.00	0.00	0.00	0.00	0.00	0.00
2,400.00	0.00	0.00	2,400.00	0.00	0.00	0.00	0.00	0.00	0.00
2,500.00	0.00 P-Build= 2.00/	0.00	2,500.00	0.00	0.00	0.00	0.00	0.00	0.00
2,600.00	2.00	136.51	2,599.98	-1.27	1.20	-1.27	2.00	2.00	0.00
2,700.00	4.00	136.51	2,699.84	-5.06	4.80	-5.06	2.00	2.00	0.00
2,800.01	6.00	136.51	2,799.46	-11.39	10.80	-11.39	2.00	2.00	0.00
EOB-Tang 2,900.00	gent= 4314.71 f 6.00	t at 2800.01 M 136.51	D 2,898.90	-18.97	17.99	-18.97	0.00	0.00	0.00
3,000.00	6.00	136.51	2,998.36	-26.55	25.19	-26.55	0.00	0.00	0.00
3,100.00	6.00	136.51	3,097.81	-34.14	32.38	-34.14	0.00	0.00	0.00
3,200.00	6.00	136.51	3,197.26	-41.72	39.58	-41.72	0.00	0.00	0.00
3,300.00	6.00	136.51	3,296.71	-49.31	46.77	-49.31	0.00	0.00	0.00
3,400.00	6.00	136.51	3,396.16	-56.89	53.96	-56.89	0.00	0.00	0.00
3,500.00	6.00	136.51	3,495.62	-64.47	61.16	-64.47	0.00	0.00	0.00
3,600.00	6.00	136.51	3,595.07	-72.06	68.35	-72.06	0.00	0.00	0.00
3,700.00	6.00	136.51	3,694.52	-79.64	75.55	-79.64	0.00	0.00	0.00
3,800.00	6.00	136.51	3,793.97	-87.23	82.74	-87.23	0.00	0.00	0.00
3,900.00	6.00	136.51	3,893.43	-94.81	89.93	-94.81	0.00	0.00	0.00
4,000.00	6.00	136.51	3,992.88	-102.39	97.13	-102.39	0.00	0.00	0.00
4,100.00	6.00	136.51	4,092.33	-109.98	104.32	-109.98	0.00	0.00	0.00
4,200.00	6.00	136.51	4,191.78	-117.56	111.52	-117.56	0.00	0.00	0.00
4,300.00	6.00	136.51	4,291.23	-125.15	118.71	-125.15	0.00	0.00	0.00
4,400.00	6.00	136.51	4,390.69	-132.73	125.90	-132.73	0.00	0.00	0.00
4,500.00	6.00	136.51	4,490.14	-140.31	133.10	-140.31	0.00	0.00	0.00
4,600.00	6.00	136.51	4,589.59	-147.90	140.29	-147.90	0.00	0.00	0.00
4,700.00	6.00	136.51	4,689.04	-155.48	147.49	-155.48	0.00	0.00	0.00
4,800.00	6.00	136.51	4,788.50	-163.07	154.68	-163.07	0.00	0.00	0.00
4,900.00	6.00	136.51	4,887.95	-170.65	161.87	-170.65	0.00	0.00	0.00

EDM 5000.1 Lynn Db Database:

NEWFIELD EXPLORATION ROCKY Company:

MOUNTAINS

Project: DUCHESNE COUNTY, UT (NAD 83)

Site: CENTRAL BASIN (NAD 83)

Well: 15-10-3-2WH Wellbore: 15-10-3-2WH Design: 15-10-3-2WH REV00 **Local Co-ordinate Reference:**

TVD Reference:

MD Reference:

North Reference:

Survey Calculation Method:

Well 15-10-3-2WH

WELL(5346'+18'= 5,364' MSL) @ 5364.00usft

(RIG (KB= 18'))

WELL(5346'+18'= 5,364' MSL) @ 5364.00usft

(RIG (KB= 18'))

True

· ·									
Planned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
5,000.00	6.00	136.51	4,987.40	-178.23	169.07	-178.23	0.00	0.00	0.00
5,100.00	6.00	136.51	5,086.85	-185.82	176.26	-185.82	0.00	0.00	0.00
5,200.00	6.00	136.51	5,186.30	-193.40	183.45	-193.40	0.00	0.00	0.00
5,300.00	6.00	136.51	5,285.76	-200.99	190.65	-200.99	0.00	0.00	0.00
5,400.00	6.00	136.51	5,385.21	-208.57	197.84	-208.57	0.00	0.00	0.00
5,500.00	6.00	136.51	5,484.66	-216.15	205.04	-216.15	0.00	0.00	0.00
5,600.00	6.00	136.51	5,584.11	-223.74	212.23	-223.74	0.00	0.00	0.00
5,700.00	6.00	136.51	5,683.56	-231.32	219.42	-231.32	0.00	0.00	0.00
5,800.00	6.00	136.51	5,783.02	-238.91	226.62	-238.91	0.00	0.00	0.00
5,900.00	6.00	136.51	5,882.47	-246.49	233.81	-246.49	0.00	0.00	0.00
6,000.00 6,100.00 6,200.00 6,300.00 6,400.00	6.00 6.00 6.00 6.00 6.00	136.51 136.51 136.51 136.51 136.51	5,981.92 6,081.37 6,180.83 6,280.28 6,379.73	-254.07 -261.66 -269.24 -276.82 -284.41	241.01 248.20 255.39 262.59 269.78	-254.07 -261.66 -269.24 -276.82 -284.41	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00
6,500.00	6.00	136.51	6,479.18		276.98	-291.99	0.00	0.00	0.00
6,600.00	6.00	136.51	6,578.63		284.17	-299.58	0.00	0.00	0.00
6,700.00	6.00	136.51	6,678.09		291.36	-307.16	0.00	0.00	0.00
6,800.00	6.00	136.51	6,777.54		298.56	-314.74	0.00	0.00	0.00
6,900.00	6.00	136.51	6,876.99		305.75	-322.33	0.00	0.00	0.00
7,000.00 7,100.00 7,114.72	6.00 6.00 6.00 p= -2.00/100' I	136.51 136.51 136.51	6,976.44 7,075.89 7,090.54	-329.91 -337.50 -338.61	312.95 320.14 321.20	-329.91 -337.50 -338.61	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00
7,200.00	4.29	136.51	7,175.47	-344.16	326.46	-344.16	2.00	-2.00	0.00
7,300.00	2.29	136.51	7,275.30	-348.33	330.42	-348.33	2.00	-2.00	0.00
7,400.00 7,414.73 Nudge Ver t	0.29 0.00 t Pt= 7414.73 l	136.51 0.00 MD-7390.00 T	7,375.27 7,390.00	-349.97 -350.00	331.97 332.00	-349.97 -350.00	2.00 2.00	-2.00 -2.00	0.00 0.00
7,500.00	0.00	0.00	7,475.27	-350.00	332.00	-350.00	0.00	0.00	0.00
7,600.00	0.00	0.00	7,575.27	-350.00	332.00	-350.00	0.00	0.00	0.00
7,700.00	0.00	0.00	7,675.27	-350.00	332.00	-350.00	0.00	0.00	0.00
7,800.00	0.00	0.00	7,775.27	-350.00	332.00	-350.00	0.00	0.00	0.00
7,900.00	0.00	0.00	7,875.27	-350.00	332.00	-350.00	0.00	0.00	0.00
8,000.00	0.00	0.00	7,975.27	-350.00	332.00	-350.00	0.00	0.00	0.00
8,100.00	0.00	0.00	8,075.27	-350.00	332.00	-350.00	0.00	0.00	0.00
8,200.00	0.00	0.00	8,175.27	-350.00	332.00	-350.00	0.00	0.00	0.00
8,300.00	0.00	0.00	8,275.27	-350.00	332.00	-350.00	0.00	0.00	0.00
8,405.73	0.00		8,381.00	-350.00	332.00	-350.00	0.00	0.00	0.00
	P- Build= 11.0		0.405.04	0.40.40	000.00	0.40.46	44.00	44.00	0.00
8,450.00	4.87	0.00	8,425.21	-348.12	332.00	-348.12	11.00	11.00	0.00
8,500.00	10.37	0.00	8,474.75	-341.49	332.00	-341.49	11.00	11.00	0.00
8,550.00	15.87	0.00	8,523.43	-330.15	332.00	-330.15	11.00	11.00	0.00
8,600.00	21.37	0.00	8,570.79	-314.19	332.00	-314.19	11.00	11.00	0.00
8,650.00	26.87	0.00	8,616.41	-293.77	332.00	-293.77	11.00	11.00	0.00
8,700.00	32.37	0.00	8,659.86	-269.06	332.00	-269.06	11.00	11.00	0.00
8,750.00	37.87	0.00	8,700.74	-240.31	332.00	-240.31	11.00	11.00	0.00
8,800.00	43.37	0.00	8,738.68	-207.77	332.00	-207.77	11.00	11.00	0.00
8,850.00	48.87	0.00	8,773.33	-171.75	332.00	-171.75	11.00	11.00	0.00
8,900.00	54.37	0.00	8,804.36	-132.57	332.00	-132.57	11.00	11.00	0.00
8,950.00	59.87	0.00	8,831.49	-90.59	332.00	-90.59	11.00	11.00	0.00

Database: EDM 5000.1 Lynn Db

Company: NEWFIELD EXPLORATION ROCKY

MOUNTAINS

Project: DUCHESNE COUNTY, UT (NAD 83)

Site: CENTRAL BASIN (NAD 83)

Well: 15-10-3-2WH
Wellbore: 15-10-3-2WH
Design: 15-10-3-2WH REV00

Local Co-ordinate Reference:

TVD Reference:

MD Reference:

North Reference: Survey Calculation Method: Well 15-10-3-2WH

WELL(5346'+18'= 5,364' MSL) @ 5364.00usft

(RIG (KB= 18'))

WELL(5346'+18'= 5,364' MSL) @ 5364.00usft

(RIG (KB= 18'))

True

nned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
9,000.00 9,050.00	65.37 70.87	0.00 0.00	8,854.48 8,873.10	-46.21 0.17	332.00 332.00	-46.21 0.17	11.00 11.00	11.00 11.00	0.00 0.00
9,100.00 9,106.49	76.37 77.08	0.00 0.00	8,887.20 8,888.69	48.12 54.44	332.00 332.00	48.12 54.44	11.00 11.00	11.00 11.00	0.00 0.00
9,150.00	81.87	0.00	8,896.64	97.20	332.00	97.20	11.00	11.00	0.00
9,170.92	84.17	0.00	8,899.18	117.96	332.00	117.96	11.00	11.00	0.00
9,200.00	84.17° Angle= 84.17	9170.92 MD- 8		146.90	332.00	146.90	0.00	0.00	0.00
			8,902.13						
9,259.75 Uteland B	84.17 utte C-PZ1	0.00	8,908.20	206.33	332.00	206.33	0.00	0.00	0.00
9,300.00 9,355.92	84.17 84.17	0.00 0.00	8,912.29 8,917.97	246.38 302.01	332.00 332.00	246.38 302.01	0.00 0.00	0.00 0.00	0.00 0.00
	200 ft at 9355.9				·				
9,400.00 9,500.00	84.17 84.17	0.00 0.00	8,922.45 8,932.60	345.86 445.34	332.00 332.00	345.86 445.34	0.00 0.00	0.00 0.00	0.00 0.00
9,555.92	84.17 S= 3.00/100' M [0.00	8,938.28	500.97	332.00	500.97	0.00	0.00	0.00
9,600.00	85.47	359.74	8,942.27	544.87	331.90	544.87	3.00	2.94	-0.59
9,630.58	86.37	359.56	8,944.44	575.38	331.71	575.38	3.00	2.94	-0.59
	utte C-PZ2 HZ								
9,657.88	87.17	359.40	8,945.98	602.64	331.47	602.64	3.00	2.94	-0.59
Land Pt. H	Z Tgt= 87.17°	Angle= 9657.8	8 MD- 8945.98	TVD					
9,700.00	87.17	359.40	8,948.06	644.70	331.03	644.70	0.00	0.00	0.00
9,800.00 9,900.00	87.17 87.17	359.40 359.40	8,953.00 8,957.94	744.57 844.44	329.98 328.93	744.57 844.44	0.00 0.00	0.00 0.00	0.00 0.00
10,000.00	87.17	359.40	8,962.87	944.31	327.89	944.31	0.00	0.00	0.00
10,100.00	87.17	359.40	8,967.81	1,044.19	326.84	1,044.19	0.00	0.00	0.00
10,200.00	87.17	359.40	8,972.75	1,144.06	325.80	1,144.06	0.00	0.00	0.00
10,300.00	87.17	359.40	8,977.68	1,243.93	324.75	1,243.93	0.00	0.00	0.00
10,400.00	87.17	359.40	8,982.62	1,343.80	323.70	1,343.80	0.00	0.00	0.00
10,500.00	87.17	359.40	8,987.56	1,443.68	322.66	1,443.68	0.00	0.00	0.00
10,600.00 10,700.00	87.17 87.17	359.40 359.40	8,992.50 8,997.43	1,543.55 1,643.42	321.61 320.57	1,543.55 1,643.42	0.00 0.00	0.00 0.00	0.00 0.00
			•	•					
10,800.00 10,900.00	87.17 87.17	359.40 359.40	9,002.37 9,007.31	1,743.29 1,843.17	319.52 318.48	1,743.29 1,843.17	0.00 0.00	0.00 0.00	0.00 0.00
11,000.00	87.17	359.40	9,007.31	1,943.17	317.43	1,943.17	0.00	0.00	0.00
11,100.00	87.17	359.40	9,017.18	2,042.91	316.38	2,042.91	0.00	0.00	0.00
11,200.00	87.17	359.40	9,022.12	2,142.79	315.34	2,142.79	0.00	0.00	0.00
11,300.00	87.17	359.40	9,027.06	2,242.66	314.29	2,242.66	0.00	0.00	0.00
11,400.00	87.17	359.40	9,031.99	2,342.53	313.25	2,342.53	0.00	0.00	0.00
11,500.00	87.17	359.40	9,036.93	2,442.40	312.20	2,442.40	0.00	0.00	0.00
11,600.00 11,700.00	87.17 87.17	359.40 359.40	9,041.87	2,542.28	311.15	2,542.28 2,642.15	0.00 0.00	0.00	0.00 0.00
-	87.17	359.40	9,046.81	2,642.15	310.11			0.00	
11,800.00 11,900.00	87.17 97.17	359.40	9,051.74	2,742.02	309.06	2,742.02	0.00	0.00	0.00
11,900.00	87.17 87.17	359.40 359.40	9,056.68 9,061.62	2,841.89 2,941.77	308.02 306.97	2,841.89 2,941.77	0.00 0.00	0.00 0.00	0.00 0.00
12,100.00	87.17	359.40	9,066.56	3,041.64	305.92	3,041.64	0.00	0.00	0.00
12,200.00	87.17	359.40	9,071.49	3,141.51	304.88	3,141.51	0.00	0.00	0.00
12,300.00	87.17	359.40	9,076.43	3,241.38	303.83	3,241.38	0.00	0.00	0.00
12,400.00	87.17	359.40	9,081.37	3,341.26	302.79	3,341.26	0.00	0.00	0.00

EDM 5000.1 Lynn Db Database:

NEWFIELD EXPLORATION ROCKY Company:

MOUNTAINS

Project: DUCHESNE COUNTY, UT (NAD 83)

Site: CENTRAL BASIN (NAD 83)

Well: 15-10-3-2WH Wellbore: 15-10-3-2WH Design: 15-10-3-2WH REV00 **Local Co-ordinate Reference:**

TVD Reference:

MD Reference:

North Reference:

Survey Calculation Method:

Well 15-10-3-2WH

WELL(5346'+18'= 5,364' MSL) @ 5364.00usft

(RIG (KB= 18'))

WELL(5346'+18'= 5,364' MSL) @ 5364.00usft

(RIG (KB= 18'))

True

Planned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
12,500.00 12,600.00 12,700.00	87.17	359.40 359.40 359.40	9,086.30 9,091.24 9,096.18	3,441.13 3,541.00 3,640.87	301.74 300.70 299.65	3,441.13 3,541.00 3,640.87	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00
12,800.00 12,900.00 13,000.00	87.17	359.40 359.40 359.40	9,101.12 9,106.05 9,110.99	3,740.75 3,840.62 3,940.49	298.60 297.56 296.51	3,740.75 3,840.62 3,940.49	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00
13,100.00 13,200.00	87.17	359.40 359.40	9,115.93 9,120.87	4,040.36 4,140.24	295.47 294.42	4,040.36 4,140.24	0.00	0.00	0.00
13,297.89 TD-PBHL	87.17 = 13297.89 MD -	359.40 • 9125.70 TVD	9,125.70	4,238.00	293.40	4,238.00	0.00	0.00	0.00

Design Targets									
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
Sec. 10, T3S-R2W, - plan misses ta - Polygon Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 Point 7 Point 8	0.00 rget center by		-16.00 t at 0.00us -16.00 -16.00 -16.00 -16.00 -16.00 -16.00 -16.00	4,904.88 ft MD (0.00 7 0.00 -2,629.83 -5,261.67 -5,272.68 -5,284.51 -28.86 -9.00 0.00	2,283.48 IVD, 0.00 N, 0.00 18.26 31.87 -2,593.37 -5,269.81 -5,274.97 -2,635.56 0.00	7,260,722.93 0.00 E) 7,260,722.93 7,258,093.71 7,255,462.41 7,255,410.15 7,255,356.27 7,260,611.19 7,260,672.52 7,260,722.93	2,035,013.37 2,035,072.95 2,035,127.91 2,032,503.16 2,029,827.24 2,029,739.50 2,032,378.27 2,035,013.37	40° 14' 38.410 N	110° 5' 10.810 W
Sec. 10, T3S-R2W, - plan misses ta - Polygon Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 Point 7 Point 8			-16.00 t at 0.00us -16.00 -16.00 -16.00 -16.00 -16.00 -16.00 -16.00	4,244.08 ft MD (0.00 7 0.00 -1,972.11 -3,942.21 -3,950.94 -3,959.59 -61.87 -6.72 0.00	1,626.77 IVD, 0.00 N, 0.00 14.61 24.57 -1,940.63 -3,955.47 -3,959.17 -1,976.52 0.00	7,260,051.89 0.00 E) 7,260,051.89 7,258,080.26 7,256,110.55 7,256,070.95 7,256,030.64 7,259,927.82 7,260,014.12 7,260,051.89	2,034,367.12 2,034,412.71 2,034,453.63 2,032,488.81 2,030,474.35 2,030,409.41 2,032,390.95 2,034,367.12	40° 14′ 31.880 N	110° 5' 19.280 W
- Point TD-PBHL (15-10-3-2	2V 0.00	6.40usft at 0.00	9,126.00	4,238.00	292.65	7,256,084.01 5.46 N, 332.00 E) 7,260,024.85 38.00 N, 293.40	2,033,033.26	40° 13' 52.863 N 40° 14' 31.820 N	110° 5' 35.933 W 110° 5' 36.485 W

Project:

Planning Report

EDM 5000.1 Lynn Db Database:

NEWFIELD EXPLORATION ROCKY Company:

MOUNTAINS

DUCHESNE COUNTY, UT (NAD 83)

Site: CENTRAL BASIN (NAD 83)

Well: 15-10-3-2WH Wellbore: 15-10-3-2WH Design: 15-10-3-2WH REV00 **Local Co-ordinate Reference:**

TVD Reference:

MD Reference:

North Reference:

Survey Calculation Method:

Well 15-10-3-2WH

WELL(5346'+18'= 5,364' MSL) @ 5364.00usft

(RIG (KB= 18'))

WELL(5346'+18'= 5,364' MSL) @ 5364.00usft

(RIG (KB= 18'))

True

Formations						
	Measured Depth (usft)	Vertical Depth (usft)	Name	Lithology	Dip (°)	Dip Direction (°)
	9,106.49	8,888.69	Uteland Butte C		2.83	0.00
	9,259.75	8,908.20	Uteland Butte C-PZ1		2.83	0.00
	9,630.58	8,944.44	Uteland Butte C-PZ2 HZ Tgt		2.83	0.00

Plan Annotations				
Measure Depth (usft)	d Vertical Depth (usft)	Local Coord +N/-S (usft)	dinates +E/-W (usft)	Comment
2,500.0	2,500.00	0.00	0.00	Nudge KOP-Build= 2.00/100' MD
2,800.	2,799.46	-11.39	10.80	EOB-Tangent= 4314.71 ft at 2800.01 MD
7,114.	7,090.54	-338.61	321.20	Nudge Drop= -2.00/100' MD
7,414.	7,390.00	-350.00	332.00	Nudge Vert Pt= 7414.73 MD-7390.00 TVD
8,405.	73 8,381.00	-350.00	332.00	Curve- KOP- Build= 11.00°/100' MD
9,170.	92 8,899.18	117.96	332.00	Land Pt.= 84.17° Angle= 9170.92 MD- 8899.18 TVD
9,355.	92 8,917.97	302.01	332.00	Tangent= 200 ft at 9355.92 MD
9,555.	92 8,938.28	500.97	332.00	Curve DLS= 3.00/100' MD- TFO -11.30
9,657.	8,945.98	602.64	331.47	Land Pt. HZ Tgt= 87.17° Angle= 9657.88 MD- 8945.98 TVD
13,297.	9,125.70	4,238.00	293.40	TD-PBHL= 13297.89 MD- 9125.70 TVD

AFFIDAVIT OF EASEMENT, RIGHT-OF-WAY AND SURFACE USE AGREEMENT

<u>Peter Burns</u> personally appeared before me, being duly sworn, deposes and with respect to State of Utah R649-3-34.7 says:

- 1. My name is <u>Peter Burns</u>. I am a Landman for Newfield Production Company, whose address is 1001 17th Street, Suite 2000, Denver, CO 80202 ("Newfield").
- 2. Newfield is the Operator of the proposed <u>Dart 15-10-3-2WH</u> well with a surface location to be positioned in the <u>SWSE</u> of Section <u>10</u>, Township <u>3</u> South, Range <u>2</u> West (the "Drillsite Location"), and a bottom hole location to be positioned in the <u>NWNE</u> of Section <u>10</u>, Township <u>3</u> South, Range <u>2</u> West, <u>Duchesne County, Utah</u>. The surface owner of the Drillsite Location is <u>Dart Homestead Ranch</u>, whose address is <u>Route 2</u>, <u>Box 2044</u>, <u>Roosevelt</u>, <u>UT 84066</u> ("Surface Owner").
- 3. Newfield and the Surface Owner have agreed upon an Easement, Right-of-Way and Surface Use Agreement dated <u>February 16, 2013</u> covering the Drillsite Location and access to the Drillsite Location.

FURTHER AFFIANT SAYETH NOT.

Peter Burns

ACKNOWLEDGEMENT

STATE OF COLORADO

§

COUNTY OF DENVER

§

Before me, a Notary Public, in and for the State, on this <u>2nd</u> day of <u>July</u>, <u>2013</u>, personally appeared <u>Peter Burns</u>, to me known to be the identical person who executed the foregoing instrument, and acknowledged to me that <u>he</u> executed the same as <u>his</u> own free and voluntary act and deed for the uses and purposes therein set forth.

CHRISTIAN CABRIN SIZEMORE
NOTARY PUBLIC
STATE OF COLORADO
NOTARY ID 20134036083
MY COMMISSION EXPIRES JUNE 10, 2017

NOTARY PUBLIC

AFFIDAVIT OF EASEMENT AND RIGHT-OF-WAY

<u>Peter Burns</u> personally appeared before me, being duly sworn, deposes and with respect to State of Utah R649-3-34.7 says:

- 1. My name is <u>Peter Burns</u>. I am a Landman for Newfield Production Company, whose address is 1001 17th Street, Suite 2000, Denver, CO 80202 ("Newfield").
- 2. Newfield is the Operator of the proposed <u>Dart 15-10-3-2WH</u>, <u>Ranch 16-10-3-2WH</u>, <u>D-15-22-3-2WH</u> and <u>3-15-22-3-2WH</u> wells with surface locations to be positioned in the <u>S/2S/2</u> of Section <u>10</u>, Township <u>3</u> South, Range <u>2</u> West, <u>Duchesne County, Utah</u> (the "Drillsite Location"). The surface owner of a portion of the access road is <u>Mack Rideout</u>, <u>Personal Representative of the Estate of Sherman D. Rideout</u>, whose address is <u>3634 Capstone Ave.</u>, <u>Salt Lake City</u>, <u>UT 84121</u> ("Surface Owner").
- 3. Newfield and the Surface Owner have agreed upon an Easement and Right-of-Way dated <u>December 10, 2012</u> covering the <u>SWNW</u> of Section <u>14</u>, Township <u>3</u> South, Range <u>2</u> West, Duchesne County, Utah.

FURTHER AFFIANT SAYETH NOT.

Peter Burns

ACKNOWLEDGEMENT

STATE OF COLORADO

8

COUNTY OF DENVER

8

Before me, a Notary Public, in and for the State, on this <u>3rd</u> day of <u>July</u>, <u>2013</u>, personally appeared <u>Peter Burns</u>, to me known to be the identical person who executed the foregoing instrument, and acknowledged to me that <u>he</u> executed the same as <u>his</u> own free and voluntary act and deed for the uses and purposes therein set forth.

NOTARY PUBLIC

AFFIDAVIT OF EASEMENT AND RIGHT-OF-WAY

<u>Peter Burns</u> personally appeared before me, being duly sworn, deposes and with respect to State of Utah R649-3-34.7 says:

- 1. My name is <u>Peter Burns</u>. I am a Landman for Newfield Production Company, whose address is 1001 17th Street, Suite 2000, Denver, CO 80202 ("Newfield").
- 2. Newfield is the Operator of the proposed <u>Dart 15-10-3-2WH</u>, <u>Ranch 16-10-3-2WH</u>, <u>D-15-22-3-2WH</u> and <u>3-15-22-3-2WH</u> wells with surface locations to be positioned in the <u>S/2S/2</u> of Section <u>10</u>, Township <u>3</u> South, Range <u>2</u> West, <u>Duchesne County, Utah</u> (the "Drillsite Location"). The surface owner of a portion of the access road and pipeline route is <u>William Mellema</u>, <u>Jr. Trustee</u>, whose address is <u>P.O. Box 1198</u>, <u>Parker</u>, <u>CO 80134-1198</u> ("Surface Owner").
- 3. Newfield and the Surface Owner have agreed upon an Easement and Right-of-Way dated September 20, 2012 covering the N/2 and SE/4SW/4 of Section 15, Township 3 South, Range 2 West, Duchesne County, Utah.

FURTHER AFFIANT SAYETH NOT.

Peter Burns

ACKNOWLEDGEMENT

STATE OF COLORADO

§ §

COUNTY OF DENVER

Before me, a Notary Public, in and for the State, on this <u>3rd</u> day of <u>July 2013</u>, personally appeared <u>Peter Burns</u>, to me known to be the identical person who executed the foregoing instrument, and acknowledged to me that <u>he</u> executed the same as <u>his</u> own free and voluntary act and deed for the uses and purposes therein set forth.

NOTARY PUBLIC

AFFIDAVIT OF EASEMENT AND RIGHT-OF-WAY

<u>Peter Burns</u> personally appeared before me, being duly sworn, deposes and with respect to State of Utah R649-3-34.7 says:

- 1. My name is <u>Peter Burns</u>. I am a Landman for Newfield Production Company, whose address is 1001 17th Street, Suite 2000, Denver, CO 80202 ("Newfield").
- 2. Newfield is the Operator of the proposed <u>Dart 15-10-3-2WH</u>, Ranch 16-10-3-2WH, D-15-22-3-2WH and 3-15-22-3-2WH wells with surface locations to be positioned in the <u>S/2S/2</u> of Section <u>10</u>, Township <u>3</u> South, Range <u>2</u> West, <u>Duchesne County, Utah</u> (the "Drillsite Location"). The surface owner of a portion of the access road is <u>Bruce Dart, Trustee</u>, whose address is <u>Route 2</u>, <u>Box 2044</u>, <u>Roosevelt, UT 84066</u> ("Surface Owner").
- 3. Newfield and the Surface Owner have agreed upon an Easement and Right-of-Way dated February 16, 2013 covering the E/2NW and N/2NE of Section 14, Township 3 South, Range 2 West, Duchesne County, Utah.

FURTHER AFFIANT SAYETH NOT

Peter Burns

ACKNOWLEDGEMENT

STATE OF COLORADO

8

COUNTY OF DENVER

8

Before me, a Notary Public, in and for the State, on this <u>3rd</u> day of <u>July 2013</u>, personally appeared <u>Peter Burns</u>, to me known to be the identical person who executed the foregoing instrument, and acknowledged to me that <u>he</u> executed the same as <u>his</u> own free and voluntary act and deed for the uses and purposes therein set forth.

NOTARY PUBLIC

July 9, 2013

State of Utah Division of Oil, Gas & Mining ATTN: Brad Hill PO Box 145801 Salt Lake City, UT 84114

RE:

15-10-3-2WH

Township 3 South, Range 2 West, Section 10

Duchesne County, Utah

Dear Mr. Hill,

Newfield Exploration Company

1001 17th Street | Suite 2000 Denver, Colorado 80202 PH 303-893-0102 | FAX 303-893-0103

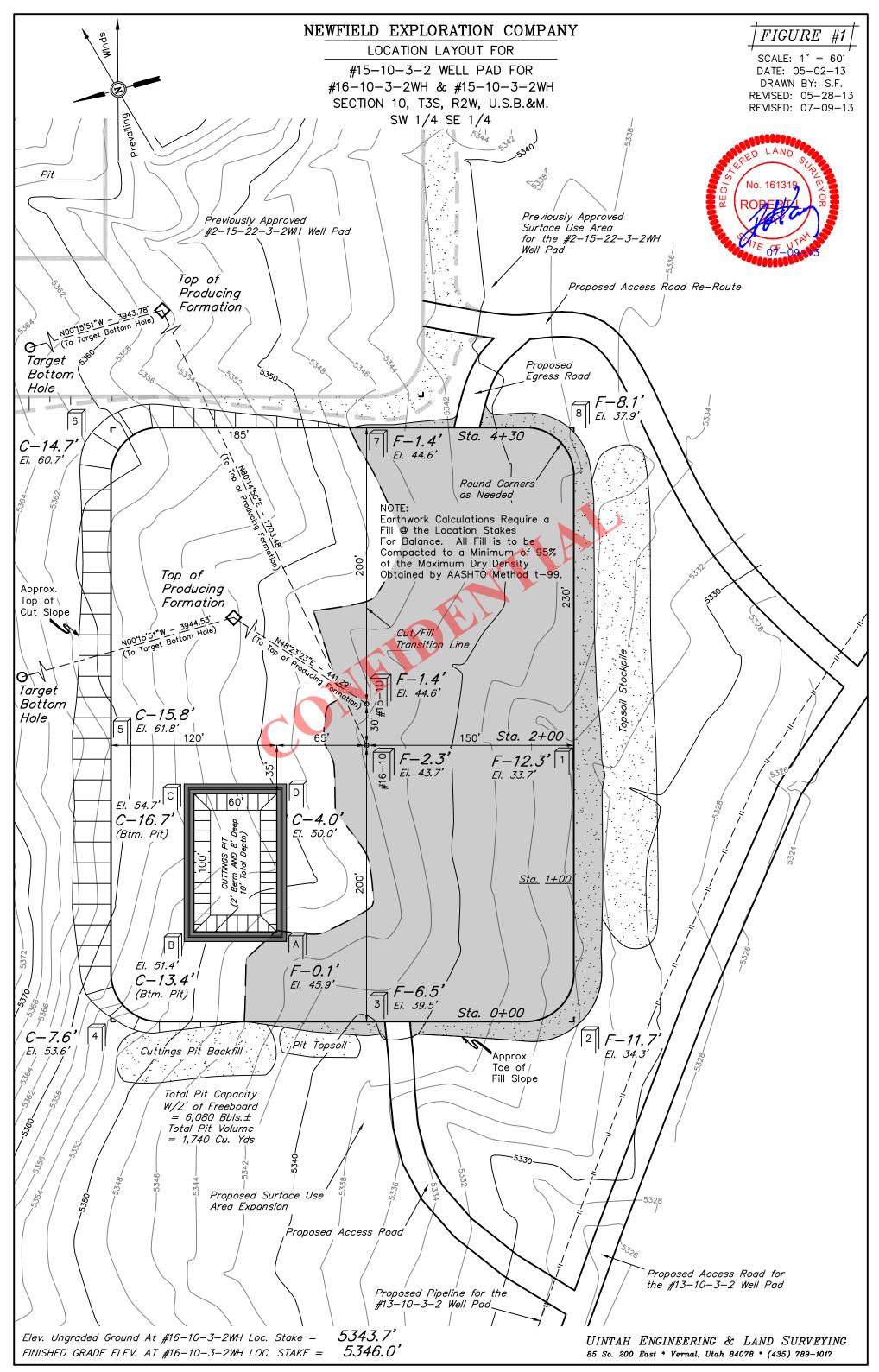
Newfield Production Company ("Newfield") proposes to drill the 15-10-3-2WH from a surface location of 368' FSL and 2311' FEL of Section 10, T3S R2W, to a bottom hole location of 660' FNL and 1980' FEL of Section 10, T3S R2W.

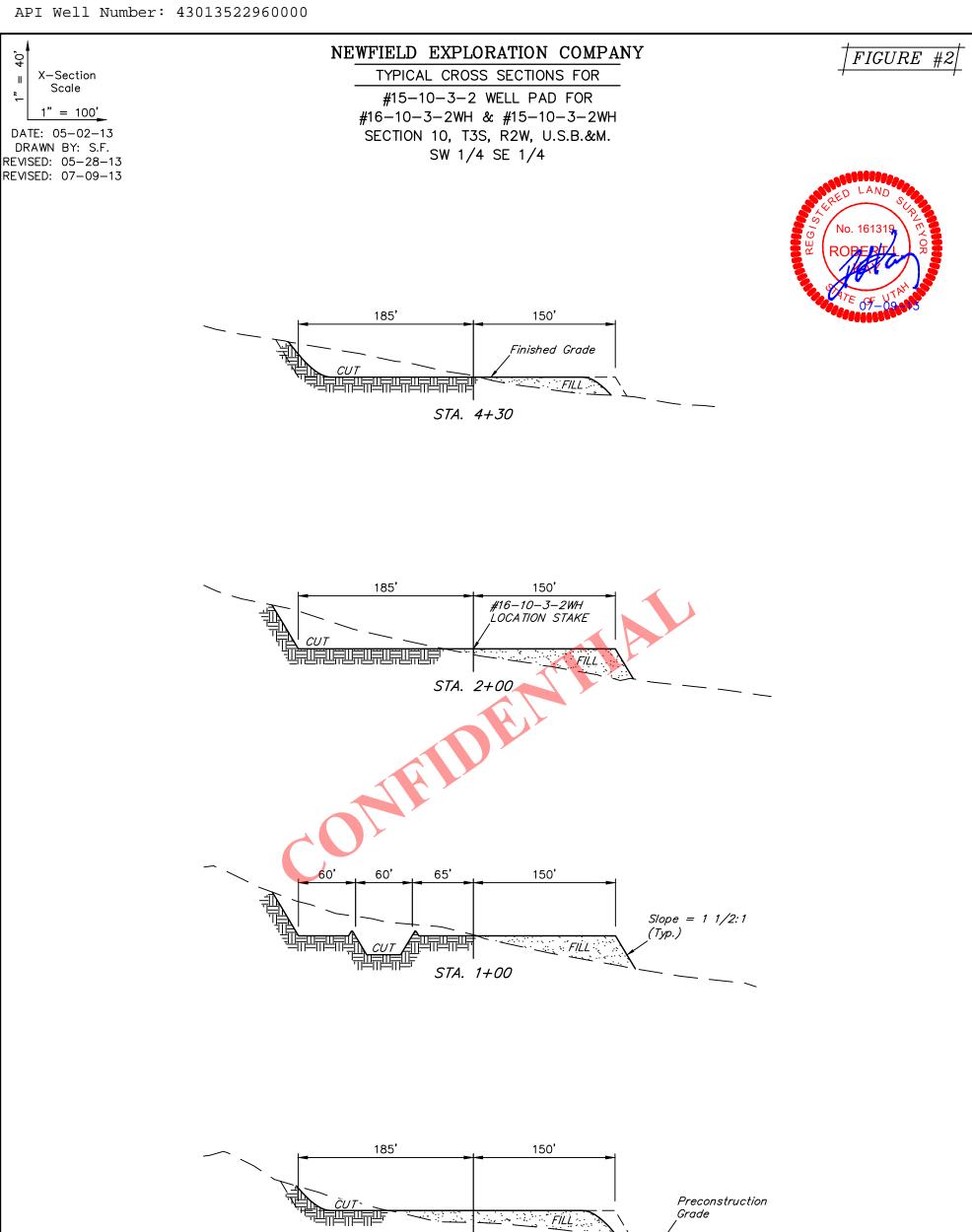
The 15-10-3-2WH is covered by Order No. 139-90, which requires no portion of the producing interval of the horizontal lateral be closer than 660' from the northern or southern section boundaries and no closer than 660' from the eastern or western section boundaries.

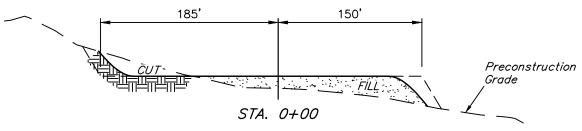
In compliance with the above referenced Order, the top of the uppermost producing zone of the 15-10-3-2WH is 660' FSL and 1980' FEL of 3S 2W Section 10. Newfield shall case and cement the 15-10-3-2WH wellbore from the surface location to the point where the wellbore reaches the legal setback, and the wellbore will only be completed within the legal setback. In the event a future recompletion outside of this setback is proposed, Newfield shall attempt to acquire consent from all the owners in Section 15 of T3S R2W, and shall file the appropriate application with the State. The bottom hole location of the 15-10-3-2WH is 660' FNL and 1980' FEL of 3S 2W Section 10, which is within the legal setback.

Newfield has also obtained authorization from the surface owner of the drilling location, as is evidenced by the Affidavit of Easement, Right-of-Way and Surface Use Agreement attached to the APD. Newfield and its partners are the leasehold owners of the minerals underlying the surface location and all that portion of the wellbore of the 15-10-3-2WH lying outside the drilling unit.

Based on Newfield's compliance with the requirements of Order No. 139-90, Newfield respectfully requests the approval of our APD for the 15-10-3-2WH.


If you have any questions or require further information, please do not hesitate to contact the undersigned at 303-382-4466 or by email at rnmiller@newfield.com. Your consideration of this matter is greatly appreciated.


Sincerely,


Robert N. Miller II

1. Mllet

Landman

APPROXIMATE ACREAGE

ORIGINAL PROPOSED WELL

SITE DISTURBANCE = \pm 5.702 ACRES

NEW (ADDITIONAL TO ORIGINAL) PROPOSED

EXPANSION WELL SITE DISTURBANCE = \pm 5.058 ACRES ACCESS ROAD DISTURBANCE = \pm 0.427 ACRES

PIPELINE DISTURBANCE = ± 0.204 ACRES

 $TOTAL = \pm 11.391 ACRES$

APPROXIMATE YARDAGES

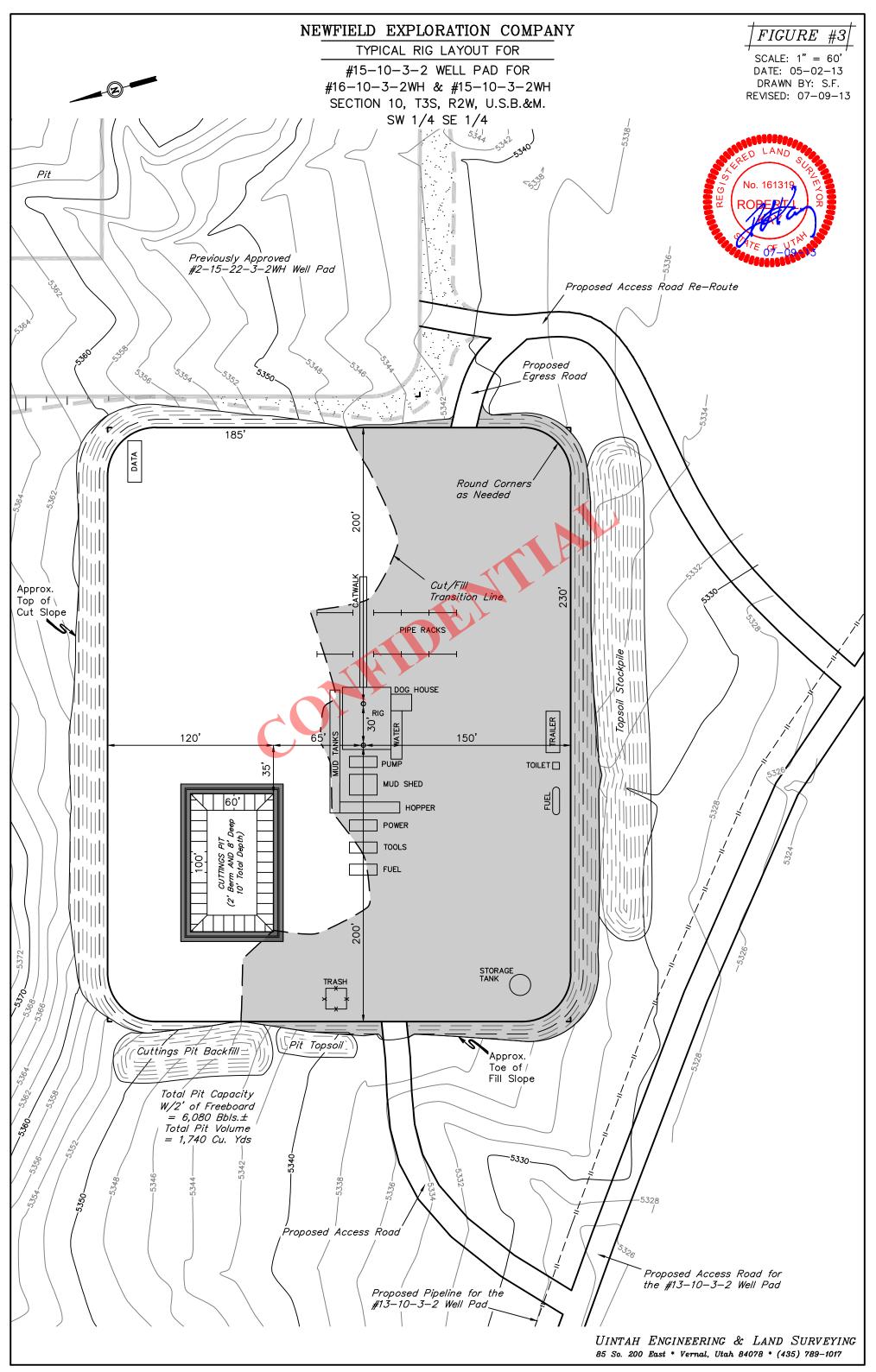
= *3,100* Cu. Yds. (6") Topsoil Stripping Remaining Location = 19,880 Cu. Yds.

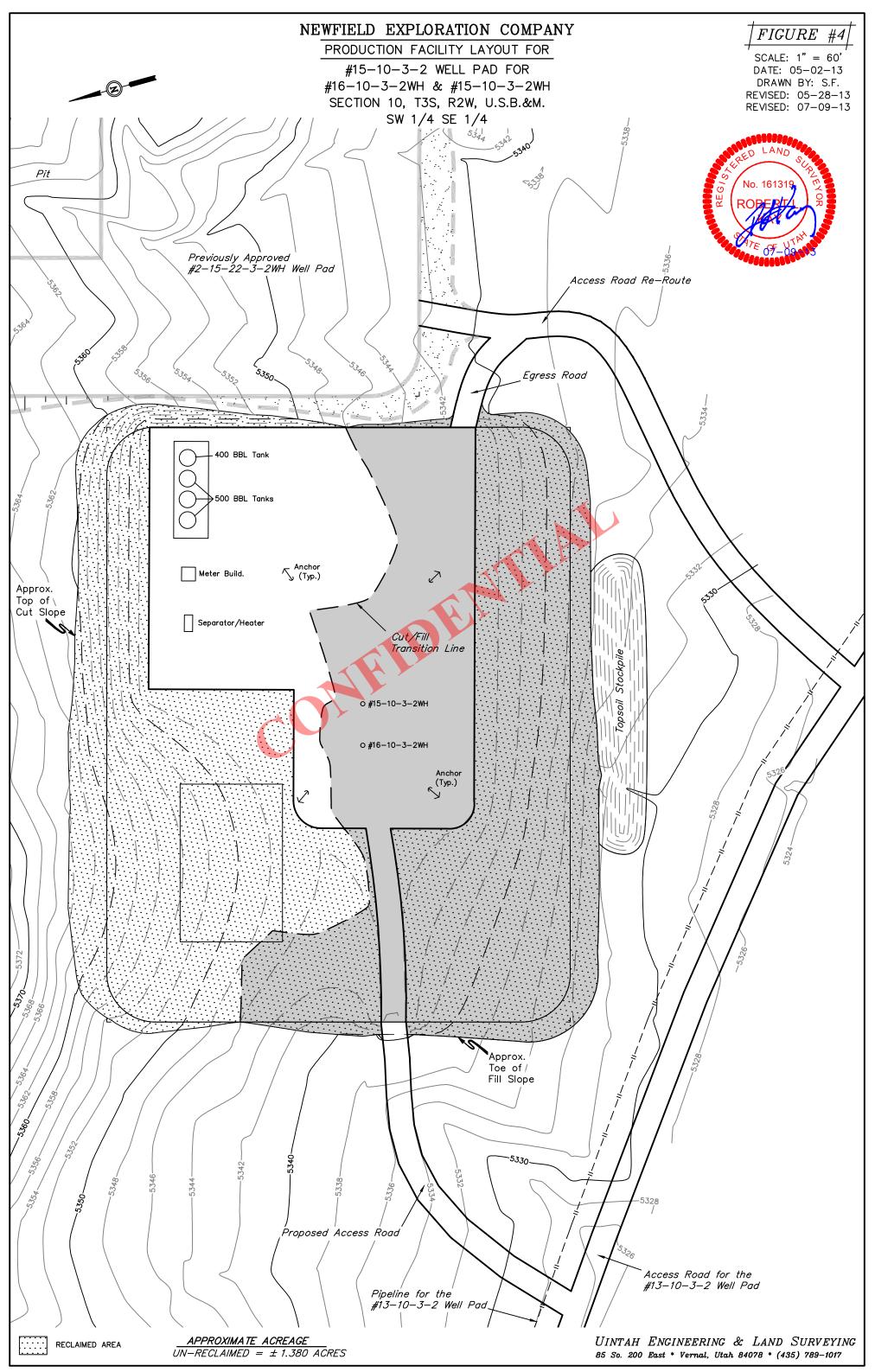
TOTAL CUT 22,980 CU. YDS. **FILL** 19,010 CU. YDS.

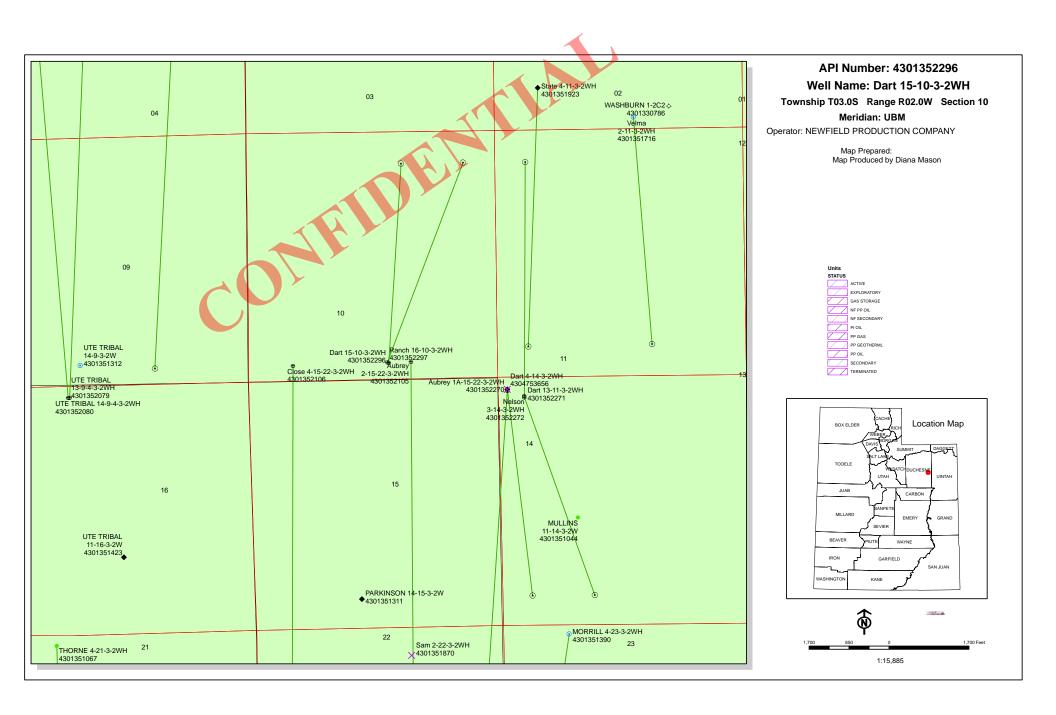
* NOTE:

FILL QUANTITY INCLUDES

5% FOR COMPACTION


EXCESS MATERIAL Topsoil & Pit Backfill

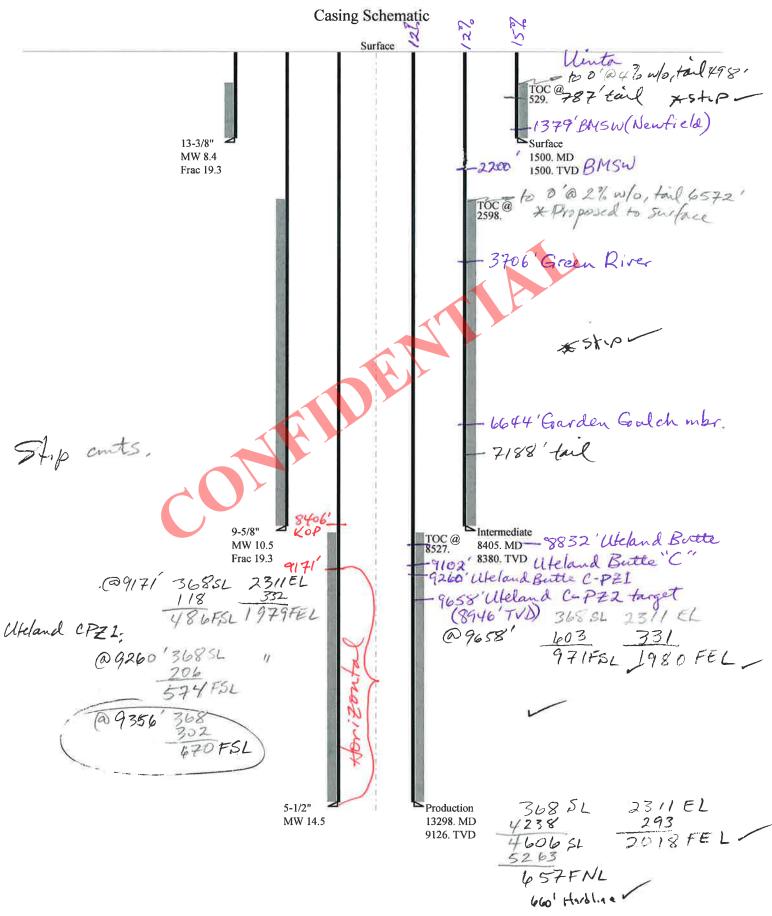

= 3,970 Cu. Yds. = *3,970* Cu. Yds.


(1/2 Pit Vol.)

EXCESS UNBALANCE O Cu. Yds. (After Interim Rehabilitation)

UINTAH ENGINEERING & LAND SURVEYING 85 So. 200 East * Vernal, Utah 84078 * (435) 789-1017

*Max Pressure Allowed @ Previous Casing Shoe=


BOPE REVIEW NEWFIELD PRODUCTION COMPANY Dart 15-10-3-2WH 43013522960000

Well Name		NEWFIELD PRO	DUCTION COMPA	ANY Dart 15-10-	3-2W	H 43013522	96	
String		COND	SURF	11	i I	PROD	<u> </u>	
Casing Size(")		20.000	13.375	9.625	i	5.500	7	
Setting Depth (TVD)		60	1500	8400	ĺ	9126	7	
Previous Shoe Setting Dept	h (TVD)	0	60	1500	i	8400	i	
Max Mud Weight (ppg)		8.3	8.4	10.5	i	14.5	i	
BOPE Proposed (psi)		0	500	5000		5000	i	
Casing Internal Yield (psi)		1000	2730	5750	Ī	12360	i	
Operators Max Anticipated	Pressure (psi)	6643			Ī	14.0		
Calculations		COND Str	ing	-		20.000	"	
Max BHP (psi)		.052*Setting Depth*MW=						
*					26		BOPE Ade	quate For Drilling And Setting Casing at Depth?
MASP (Gas) (psi)		Max BH	P-(0.12*Setti	ng Depth)=	19		NO	
MASP (Gas/Mud) (psi)		Max BH	P-(0.22*Setti	ng Depth)=	13		NO	
					-		*Can Full	Expected Pressure Be Held At Previous Shoe?
Pressure At Previous Shoe	Max BHP22*(Setting Depth - Previous Shoe Depth						NO	
Required Casing/BOPE Tes	Test Pressure=						psi	
*Max Pressure Allowed @ 1	Previous Casing	Shoe=			0		psi *Ass	sumes 1psi/ft frac gradient
Calculations	SURF String					13.375	"	
Max BHP (psi)	.052*Setting Depth*MW					5	DODE 4.1	
MASP (Gas) (psi)		May DU	P-(0.12*Setti	ng Donth)-	H			quate For Drilling And Setting Casing at Depth?
			7. / /		47		YES	diverter
MASP (Gas/Mud) (psi)		мах вн	P-(0.22*Setti	ng Deptn)=	32	5	*Con Full	OK Expected Pressure Be Held At Previous Shoe?
Pressure At Previous Shoe	Max BHP- 22*(S	etting Denth	Previous Sh	oe Denth)=				OK
Required Casing/BOPE Tes					33		psi	UK
*Max Pressure Allowed @]		Shoe=			15			sumes 1psi/ft frac gradient
Transfer transfer transfer to the contract of	TOTAL OUR AND A				60		7100	ames Tps://t True gradient
Calculations		I1 Strin	g			9.625	"	
Max BHP (psi)		.0	52*Setting D	epth*MW=	45	86		
							BOPE Ade	quate For Drilling And Setting Casing at Depth?
MASP (Gas) (psi)		Max BH	P-(0.12*Setti	ng Depth)=	35	78	YES	5M BOPE, ram type, 5M annular
MASP (Gas/Mud) (psi)		Max BH	P-(0.22*Setti	ng Depth)=	27	38	YES	ОК
Durana AA Durantana Char	M DIID 22*/C	Cattle - Danth	D C1	D4b)	H			Expected Pressure Be Held At Previous Shoe?
Pressure At Previous Shoe		etting Depth	- Previous Sn	oe Deptn)=	30	68	NO .	ОК
Required Casing/BOPE Tes		<i>a</i> ,			40	25	psi	
*Max Pressure Allowed @ 1	Previous Casing	Shoe=			15	00	psi *Ass	sumes 1psi/ft frac gradient
Calculations		PROD Str	ing			5.500	"	
Max BHP (psi)		.0	52*Setting D	epth*MW=	68	81		
							BOPE Ade	quate For Drilling And Setting Casing at Depth?
MASP (Gas) (psi)		Max BH	P-(0.12*Setti	ng Depth)=	57	86	NO	5M BOPE, 2 ram preventers, annular
MASP (Gas/Mud) (psi)	Max BHP-(0.22*Setting Depth)				48	73	YES	ОК
	re At Previous Shoe Max BHP22*(Setting Depth - Previous Shoe Depth)				L		*Can Full	Expected Pressure Be Held At Previous Shoe?
	· ·	etting Depth	- Previous Sh	oe Depth)=	67	21	YES	
Required Casing/BOPE Tes	uired Casing/BOPE Test Pressure=					00	psi	

psi *Assumes 1psi/ft frac gradient

5750

43013522960000 Dart 15-10-3-2WHrev

Well name:

43013522960000 Dart 15-10-3-2WHrev

Operator:

NEWFIELD PRODUCTION COMPANY

String type:

Surface

Project ID: 43-013-52296

Location:

DUCHESNE COUNTY

Design parameters:	Minimum design factors:	Environment:
--------------------	-------------------------	---------------------

<u>Collapse</u>

8.400 ppg Mud weight: Design is based on evacuated pipe.

Collapse:

Design factor 1.125

H2S considered? Surface temperature: No 74 °F

Bottom hole temperature: Temperature gradient:

95 °F 1.40 °F/100ft

Minimum section length:

100 ft

Burst:

Design factor

1.00

1.80 (J)

1.70 (J)

1.60 (J)

1.50 (J)

1.50 (B)

1,314 ft

Cement top:

529 ft

Burst

Max anticipated surface

No backup mud specified.

pressure: Internal gradient: Calculated BHP

1,320 psi 0.120 psi/ft

1,500 psi

Tension:

8 Round STC: 8 Round LTC:

Buttress: Premium:

Neutral point:

Body yield:

Non-directional string.

Re subsequent strings: Next setting depth:

8,400 ft Next mud weight: 10.500 ppg Next setting BHP: 4,582 psi Fracture mud wt: 19.250 ppg

Fracture depth: Injection pressure: 1,500 ft 1,500 psi

Run Seq	Segment Length	Size	Nominal Weight	Grade	End Finish	True Vert Depth	Measured Depth	Drift Diameter	Est. Cost
1	(ft) 1500	(in) 13.375	(lbs/ft) 54.50	J-55	ST&C	(ft) 1500	(ft) 1500	(in) 12.49	(\$) 18611
Run Seq	Collapse Load (psi)	Collapse Strength (psi)	Collapse Design Factor	Burst Load (psi)	Burst Strength (psi)	Burst Design Factor	Tension Load (kips)	Tension Strength (kips)	Tension Design Factor
1	655	1130	1.727	1500	2730	1.82	71.6	514	7.18 J

Tension is based on buoyed weight.

Prepared

Helen Sadik-Macdonald Div of Oil, Gas & Mining

Phone: 801 538-5357 FAX: 801-359-3940

Date: August 28,2013 Salt Lake City, Utah

Collapse is based on a vertical depth of 1500 ft, a mud weight of 8.4 ppg. The casing is considered to be evacuated for collapse purposes. Collapse strength is based on the Westcott, Dunlop & Kemler method of biaxial correction for tension.

Burst strength is not adjusted for tension.

43013522960000 Dart 15-10-3-2WHrev Well name:

NEWFIELD PRODUCTION COMPANY Operator:

Intermediate String type: Project ID: 43-013-52296

DUCHESNE COUNTY Location:

Minimum design factors: **Environment:** Design parameters: H2S considered?

Collapse Collapse:

Mud weight: 10.500 ppg Design factor 1.125 Surface temperature: 74 °F Internal fluid density: 4.930 ppg Bottom hole temperature: 191 °F

1.40 °F/100ft Temperature gradient:

No

9,126 ft

Minimum section length: 1,000 ft

Burst:

Design factor 1.00 Cement top: 2,598 ft

Burst

Max anticipated surface pressure: 4,866 psi

Internal gradient: 0.220 psi/ft Calculated BHP 6,710 psi

Annular backup: 2.33 ppg

Tension: 8 Round STC: 8 Round LTC:

1.60 (J) **Buttress:** Premium: 1.50 (J) Body yield: 1.60 (B)

Tension is based on air weight. Neutral point: 7,095 ft Directional well information:

Kick-off point 8406 ft Departure at shoe: 482 ft Maximum dogleg: 2 °/100ft 0 °

Inclination at shoe: Re subsequent strings:

Next setting depth: Next mud weight:

1.80 (J)

1.80 (J)

14.500 ppg Next setting BHP: 6,874 psi Fracture mud wt: 19.250 ppg Fracture depth: 8,380 ft Injection pressure: 8,380 psi

Run Segment **Nominal** End True Vert Measured Drift Est. Seq Length Size Weight Grade **Finish** Depth Depth Diameter Cost (ft) (in)(lbs/ft) (ft) (ft) (in) (\$) 40.00 N-80 8405 1 8405 9.625 **Buttress** 8380 114441 8.75 Collapse Collapse Collapse **Burst Burst Burst Tension Tension** Tension Load Design Load Design Load Strength Design

Run Strength Strength Seq **Factor Factor** (kips) **Factor** (psi) (psi) (psi) (psi) (kips) 1 2425 3090 1.274 5696 5750 1.01 335.2 916.3 2.73 B

Helen Sadik-Macdonald Prepared

Phone: 801 538-5357

Date: September 30,2013

Div of Oil, Gas & Mining FAX: 801-359-3940 Salt Lake City, Utah by:

Collapse is based on a vertical depth of 8380 ft, a mud weight of 10.5 ppg. An internal gradient of .256 psi/ft was used for collapse from TD Collapse strength is based on the Westcott, Dunlop & Kemler method of biaxial correction for tension.

Burst strength is not adjusted for tension.

Collapse strength is (biaxially) derated for doglegs in directional wells by multiplying the tensile stress by the cross section area to calculate a

Well name:

43013522960000 Dart 15-10-3-2WHrev

Operator:

NEWFIELD PRODUCTION COMPANY

String type:

Production

Project ID: 43-013-52296

Location:

DUCHESNE COUNTY

Environment:

Design parameters:

Collapse

Mud weight:

14.500 ppg Design is based on evacuated pipe.

Minimum design factors: Collapse:

Design factor

H2S considered? 1.125

1.00

1.80 (J)

1.60 (J)

1.50 (J)

1.60 (B)

Surface temperature:

No 74 °F 202 °F

Bottom hole temperature: Temperature gradient:

1.40 °F/100ft

Minimum section length: 1,000 ft

8,527 ft

Burst

Max anticipated surface

pressure: Internal gradient: Calculated BHP

No backup mud specified.

4,866 psi

0.220 psi/ft 6,874 psi

Tension:

Burst: Design factor

8 Round STC:

8 Round LTC: **Buttress:**

Premium: Body yield:

Directional well information: 1.80 (J)

Cement top:

Kick-off point Departure at shoe: Maximum dogleg:

8406 ft 4248 ft 11 °/100ft

Inclination at shoe:

87.17°

Tension is based on air weight. Neutral point: 7,147 ft

Run	Segment		Nominal		End	True Vert	Measured	Drift	Est.
Seq	Length (ft)	Size (in)	Weight (lbs/ft)	Grade	Finish	Depth (ft)	Depth (ft)	Diameter (in)	Cost (\$)
1	13298	5.5	20.00	P-110	Buttress	9126	13298	4.653	110323
Run	Collapse	Collapse	Collapse	Burst	Burst	Burst	Tension	Tension	Tension
Seq	Load (psi)	Strength (psi)	Design Factor	Load (psi)	Strength (psi)	Design Factor	Load (kips)	Strength (kips)	Design Factor
1	6874	11100	1.615	6874	12360	1.80	182.5	641.1	3.51 B

Prepared

Helen Sadik-Macdonald

by: Div of Oil, Gas & Mining

Phone: 801 538-5357 FAX: 801-359-3940

Date: September 30,2013 Salt Lake City, Utah

Remarks:

Collapse is based on a vertical depth of 9126 ft, a mud weight of 14.5 ppg. The casing is considered to be evacuated for collapse purposes. Collapse strength is based on the Westcott, Dunlop & Kemler method of biaxial correction for tension.

Burst strength is not adjusted for tension.

Collapse strength is (biaxially) derated for doglegs in directional wells by multiplying the tensile stress by the cross section area to calculate a

ON-SITE PREDRILL EVALUATION

Utah Division of Oil, Gas and Mining

Operator NEWFIELD PRODUCTION COMPANY

Well Name Dart 15-10-3-2WH

API Number 43013522960000 APD No 8273 Field/Unit NORTH MYTON

BENCH

Location: 1/4,1/4 SWSE Sec 10 Tw 3.0S Rng 2.0W 368 FSL 2311 FEL

GPS Coord (UTM) 577020 4453733 Surface Owner Dart Homestead Ranch, Inc.

Participants

Bruce Dart - Landowner; Jim Burns - Starpoint; Forrest Bird, Mandie Crozier, Matt Barber - NFX; Kyle Gardiner - Uintah Engineering

Regional/Local Setting & Topography

on pad previously permitted. Pad will be extended to larger size of 2 pads with 2 pits, tank farms etc.

Previous pad Aubrey 2-15-22-3-2WH original language follows

The location is proposed on fallow grazing lands on the edge of the North Myton Bench. Drainages from the bench impact the site in two places. The area is rather barren of vegetation and the soils are clays. There are numerous eroded knolls and slight swales with an historic floodpalin below. The location is one mile West of Highway 40 and 2 1/2 miles North of Myton just off Dart lane. The region is comprised of benches of differing levels and floodplains form the Duchesne River that has moved from its historic route. The soils are highly erodible and vegetation is sparse with the exception of the floodplains that are quite productive farmlands. Occassional buttes and numerous deep cut erosional features describe the region that is experiencing rapid growth in petroleum development.

Surface Use Plan

Current Surface Use

Grazing

Wildlfe Habitat

New Road
Miles

Well Pad

Src Const Material Surface Formation

0.5 Width 235 Length 400 Offsite UNTA

Ancillary Facilities

Waste Management Plan Adequate?

Environmental Parameters

Affected Floodplains and/or Wetlands N

Flora / Fauna

RECEIVED: October 22, 2013

High desert shrubland ecosystem. Expected vegetation consists of black sagebrush, shadscale, Atriplex spp., mustard spp, rabbit brush, horsebrush, broom snakeweed, Opuntia spp and spring annuals.

Dominant vegetation;

Galletta, mat atriplex and broom snake weed

Wildlife;

Adjacent habitat contains forbs that may be suitable browse for deer, antelope, prairie dogs or rabbits. Wild turkeys have moved in and were encountered multiple times. DWR did not respond with comments / issues

Soil Type and Characteristics

fat, light colored clays soils

Erosion Issues Y

Sedimentation Issues Y

Site Stability Issues N

Drainage Diverson Required? Y

plans show diversion placement

Berm Required? Y

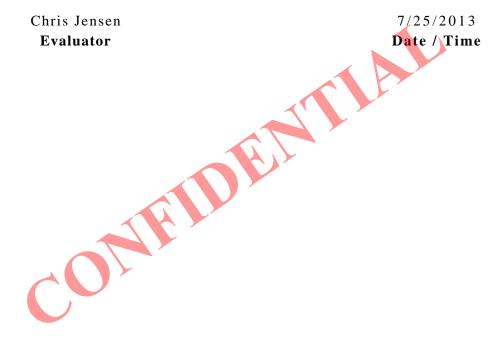
Erosion Sedimentation Control Required?

Paleo Survey Run? N Paleo Potental Observed? N Cultural Survey Run? N Cultural Resources? N

Reserve Pit

Site-Specific Factors	Site Ran	king	
Distance to Groundwater (feet)	75 to 100	10	
Distance to Surface Water (feet)		20	
Dist. Nearest Municipal Well (ft)	500 to 1320	10	
Distance to Other Wells (feet)		20	
Native Soil Type	Mod permeability	10	
Fluid Type	Oil Base Mud Fluid	15	
Drill Cuttings	Normal Rock	0	
Annual Precipitation (inches)	10 to 20	5	
Affected Populations			
Presence Nearby Utility Conduits	Present	15	
	Final Score	105	1 Sensitivity Level

Characteristics / Requirements


RECEIVED: October 22, 2013

Operator intends to use an oil based drilling mud and is therefore required to use a closed loop system. If a reserve pit and freshwater is used, Pit to be dug to a depth of 8'. Because of the likely hood of disturbance to existing sandstone bedrock, pit underlayment is to be used to protect the liner from potential puncture. Pit should be fenced to prevent entry by deer, other wildlife and domestic animals. Pit to be closed within one year after drilling activities are complete.

Closed Loop Mud Required? Y Liner Required? Y Liner Thickness 16 Pit Underlayment Required? Y

Other Observations / Comments

This is a pad that is intended as an extension of a pad that was previously permitted yet not built. They intend to extend this pad by approximately one more pad built immediately adjacent and connecting. It will have two very large cuttings pits etc.

Application for Permit to Drill Statement of Basis

Utah Division of Oil, Gas and Mining

APD No	API WellNo	Status	Well Type	Surf Owner	CBM
8273	43013522960000	LOCKED	OW	P	No
Operator	NEWFIELD PRODUCTION (COMPANY	Surface Owner-APD	Dart Homeste Ranch, Inc.	ead
Well Name	Dart 15-10-3-2WH		Unit		
Field	NORTH MYTON BENCH		Type of Work	DRILL	
Location	SWSE 10 3S 2W U (UTM) 577030E 44537	368 FSL 30N	2311 FEL GPS Coor	ſ	

Geologic Statement of Basis

Newfield proposes to set 60' of conductor and 1,500' of surface casing at this location. The base of the moderately saline water at this location is estimated to be at a depth of 2,200'. A search of Division of Water Rights records shows 23 water wells within a 10,000 foot radius of the center of Section 10. Depth is listed as ranging from 32 to 800 feet. Depths are not listed for 4 wells. Water use is listed as irrigation, stock watering, municipal and domestic use. The surface formation at this site is the Uinta Formation. The Uinta Formation is made up of interbedded shales and sandstones. The sandstones are mostly lenticular and discontinuous and should not be a significant source of useable ground water. Intermediate casing cement should be brought up to or above the estimated base of the moderately saline ground water.

Brad Hill 8/7/2013
APD Evaluator Date / Time

Surface Statement of Basis

Location is proposed in a good location although outside the spacing window typical of a horizontal well. Access road enters the pad from the east. The landowner was in attendance for the pre-site inspection.

The soil type and topography at present do combine to pose a small threat to erosion or sediment/ pollution transport in these regional climate conditions.

Usual construction standards of the Operator appear to be adequate for the proposed purpose as submitted. Operator has plans to use a closed loop system an oil based mud not indicated on plans.

I recognize no special flora or animal species or cultural resources on site that the proposed action may harm. The location was previously surveyed for cultural and paleontological resources as the operator saw fit. I have advised the operator take all measures necessary to comply with ESA and MBTA and that actions insure no disturbance to species that may have not been seen during onsite visit.

The location should be bermed to prevent fluids from entering or leaving the confines of the pad. Fencing around the reserve pit will be necessary to prevent wildlife and livestock from entering. A synthetic liner of 16 mils (minimum) should be utilized in the reserve pit. Measures (BMP's) shall be taken to protect steep slopes and topsoil pile from erosion, sedimentation and stability issues. A diversion is to be built sufficient to conduct overland or channel flow according to plans submitted

RECEIVED: October 22, 2013

Chris Jensen
Onsite Evaluator

7/25/2013 **Date / Time**

Conditions of Approval / Application for Permit to Drill

Category Condition

Pits A closed loop mud circulation system is required for this location.

Pits A synthetic liner with a minimum thickness of 16 mils with a felt subliner shall be properly installed

and maintained in the cuttings pit.

Surface Drainages adjacent to the proposed pad shall be diverted around the location.

Surface The well site shall be bermed to prevent fluids from leaving the pad.

Surface The reserve pit shall be fenced upon completion of drilling operations.

Surface Measures (BMP's) shall be taken to protect steep slopes and topsoil pile from erosion, sedimentation

and stability issues.

RECEIVED: October 22, 2013

WORKSHEET APPLICATION FOR PERMIT TO DRILL

APD RECEIVED: 7/12/2013 API NO. ASSIGNED: 43013522960000

WELL NAME: Dart 15-10-3-2WH

OPERATOR: NEWFIELD PRODUCTION COMPANY (N2695) PHONE NUMBER: 435 719-2018

CONTACT: Don Hamilton

PROPOSED LOCATION: SWSE 10 030S 020W Permit Tech Review:

> **SURFACE: 0368 FSL 2311 FEL** Engineering Review:

> BOTTOM: 0660 FNL 1980 FEL Geology Review:

> **COUNTY: DUCHESNE**

LATITUDE: 40.23046 LONGITUDE: -110.09454 UTM SURF EASTINGS: 577030.00 NORTHINGS: 4453730.00

FIELD NAME: NORTH MYTON BENCH

LOCATION AND SITING:

LEASE TYPE: 4 - Fee **LEASE NUMBER: Patented** PROPOSED PRODUCING FORMATION(S): UTELAND BUTTE

SURFACE OWNER: 4 - Fee **COALBED METHANE: NO**

Unit:

RECEIVED AND/OR REVIEWED:

Bond: STATE - B001834

Oil Shale 190-5

✓ PLAT R649-2-3.

R649-3-2. General **Potash**

Oil Shale 190-3 R649-3-3. Exception

Oil Shale 190-13 **Drilling Unit**

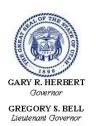
Board Cause No: Cause 139-90 Water Permit: 437478

Effective Date: 5/9/2012 **RDCC Review:**

Siting: 4 Prod LGRRV-WSTC Wells **Fee Surface Agreement**

Intent to Commingle R649-3-11. Directional Drill

Commingling Approved


Comments: Presite Completed

Stipulations: 1 - Exception Location - bhill

5 - Statement of Basis - bhill

8 - Cement to Surface -- 2 strings - hmacdonald 13 - Cement Volume Formation (3a) - hmacdonald

27 - Other - dmason 28 - Other2 - ddoucet

State of Utah

DEPARTMENT OF NATURAL RESOURCES

MICHAEL R. STYLER
Executive Director

Division of Oil, Gas and Mining

JOHN R. BAZA
Division Director

Permit To Drill

Well Name: Dart 15-10-3-2WH **API Well Number:** 43013522960000

Lease Number: Patented

Surface Owner: FEE (PRIVATE) Approval Date: 10/22/2013

Issued to:

NEWFIELD PRODUCTION COMPANY, Rt 3 Box 3630, Myton, UT 84052

Authority:

Pursuant to Utah Code Ann. 40-6-1 et seq., and Utah Administrative Code R649-3-1 et seq., the Utah Division of Oil, Gas and Mining issues conditions of approval, and permit to drill the listed well. This permit is issued in accordance with the requirements of Cause 139-90. The expected producing formation or pool is the UTELAND BUTTE Formation(s), completion into any other zones will require filing a Sundry Notice (Form 9). Completion and commingling of more than one pool will require approval in accordance with R649-3-22.

Duration:

This approval shall expire one year from the above date unless substantial and continuous operation is underway, or a request for extension is made prior to the expiration date

Exception Location:

Appropriate information has been submitted to DOGM and administrative approval of the requested exception location is hereby granted.

General:

Compliance with the requirements of Utah Admin. R. 649-1 et seq., the Oil and Gas Conservation General Rules, and the applicable terms and provisions of the approved Application for permit to drill.

Conditions of Approval:

Compliance with the Conditions of Approval/Application for Permit to Drill outlined in the Statement of Basis (copy attached).

In accordance with Utah Admin. R.649-3-21, the operator shall submit a complete angular deviation and directional survey report to the Division within 30 days following completion of the well.

Cement volume for the 5 1/2" production string shall be determined from actual hole diameter in order to place cement from the pipe setting depth back to 7406' MD in order to adequately isolate the Green River formation and honor legal setback.

Cement volumes for the 13 3/8" and 9 5/8" casing strings shall be determined from actual hole diameters in order to place cement from the pipe setting depths back to the surface.

Horizontal lateral shall not be completed outside legal setbacks (approximately 9356' measured depth based on submitted directional drilling plan).

Additional Approvals:

The operator is required to obtain approval from the Division of Oil, Gas and mining before performing any of the following actions during the drilling of this well:

- Any changes to the approved drilling plan contact Dustin Doucet
- Significant plug back of the well contact Dustin Doucet
- Plug and abandonment of the well contact Dustin Doucet

Notification Requirements:

The operator is required to notify the Division of Oil, Gas and Mining of the following actions during drilling of this well:

• Within 24 hours following the spudding of the well - contact Carol Daniels OR

submit an electronic sundry notice (pre-registration required) via the Utah Oil & Gas website

at http://oilgas.ogm.utah.gov

- 24 hours prior to testing blowout prevention equipment contact Dan Jarvis
- 24 hours prior to cementing or testing casing contact Dan Jarvis
- Within 24 hours of making any emergency changes to the approved drilling program
 - contact Dustin Doucet
- 24 hours prior to commencing operations to plug and abandon the well contact Dan Jarvis

Contact Information:

The following are Division of Oil, Gas and Mining contacts and their telephone numbers (please leave a voicemail message if the person is not available to take the call):

Carol Daniels 801-538-5284 - office
Dustin Doucet 801-538-5281 - office 801-733-0983 - after office hours
Dan Jarvis 801-538-5338 - office 801-231-8956 - after office hours

Reporting Requirements:

All reports, forms and submittals as required by the Utah Oil and Gas Conservation General Rules will be promptly filed with the Division of Oil, Gas and Mining, including but not limited to:

- Entity Action Form (Form 6) due within 5 days of spudding the well
- Monthly Status Report (Form 9) due by 5th day of the following calendar month
 - Requests to Change Plans (Form 9) due prior to implementation
 - Written Notice of Emergency Changes (Form 9) due within 5 days
 - Notice of Operations Suspension or Resumption (Form 9) due prior to

implementation

- Report of Water Encountered (Form 7) due within 30 days after completion
 Well Completion Report (Form 8) due within 30 days after completion or plugging

Approved By:

For John Rogers Associate Director, Oil & Gas

l	FORM 3												
						TATE OF UTAH TOF NATURAL RES	SOURC	CES		AMENIDE	FOR ED REPORT		
						OF OIL, GAS AND I				AMENDE	EDREPOR		
			DDI ICATION	FOR DEDI	MIT TO DOUL			·	I. WELL NAME and N	JMBER			
2. TYPE O	E WORK		APPLICATION	FUR PERI	WIT TO DRILL					Dart 15-10	-3-2WH		
2. 11110	- WORK	DRILL NEW WEL	L REENT	ER P&A WEL	L DEEPEN	WELL (B. FIELD OR WILDCAT NO	r ORTH MYTC	N BENCH		
4. TYPE O	F WELL		Oil Well	Coalbed Met	thane Well: NO				5. UNIT or COMMUNI	FIZATION A	AGREEME	NT NAM	E
6. NAME C	F OPERATOR		NEWFIELD PI	RODUCTION	COMPANY				7. OPERATOR PHONE	435 646-	-4825		
8. ADDRES	SS OF OPERAT	OR	Rt 3 Box 36					9	O. OPERATOR E-MAIL				
	AL LEASE NUN		111 0 201 00		IINERAL OWNERS	SHIP	_		12. SURFACE OWNER		Wildia.com		
	., INDIAN, OR S	Patented		FE	DERAL INC	DIAN () STATE) I	FEE 🗓		DIAN 🔵	STATE		E (<u>())</u>
		OWNER (if box 1	Ďart Hom	nestead Ran	ch, Inc.				14. SURFACE OWNER	435-722	-7087	·	
15. ADDRI	ESS OF SURFA	ACE OWNER (if bo	x 12 = 'fee') Route 2, Box 2	044, Roosev	relt, UT 84066				16. SURFACE OWNE	R E-MAIL (if box 12 :	= 'fee')	
	N ALLOTTEE O = 'INDIAN')	R TRIBE NAME			NTEND TO COMN TIPLE FORMATIO	IINGLE PRODUCTIONS	N FRO	M	19. SLANT				
	,			YE	S (Submit C	Commingling Applica	tion)	NO 🗓	VERTICAL DIF	RECTIONAL	. 🔵 но	ORIZONT	AL 📵
20. LOCA	TION OF WEL	L		FOOTAG	SES	QTR-QTR		SECTION	TOWNSHIP	RAN	NGE	ME	RIDIAN
LOCATIO	N AT SURFAC	E		368 FSL 23	11 FEL	SWSE		10	3.0 S	2.0	W		U
Top of U	ppermost Pro	ducing Zone		660 FSL 19	80 FEL	SWSE		10	3.0 S	2.0	W		U
At Total	Depth		(660 FNL 19	80 FEL	NWNE		10	3.0 S	2.0	W	U	
21. COUN	TY	DUCHESNE		22. D	ISTANCE TO NEA	REST LEASE LINE (Feet)	:	23. NUMBER OF ACRI	ES IN DRIL 40	LING UNIT	-	
					ISTANCE TO NEA		E POOI	L ;	26. PROPOSED DEPTI		TVD: 912	5	
27. ELEV <i>A</i>	TION - GROU	ND LEVEL		28. E	OND NUMBER	30			29. SOURCE OF DRIL	LING WATI	ER /		
		5345				B001834			WATER RIGHTS APPR		IBER IF AP	PLICABL	E
			7	7'>	Hole, Casing	, and Cement Inf	ormat	tion					
String	Hole Size	Casing Size	Length	Weight	Grade & Thr	ead Max Mud	Wt.		Cement		Sacks	Yield	Weight
COND	24	20	0 - 60	0.0	Unknown				Class G		57 120	1.17	15.8
SURF				54.5	J-55 ST&0	C 8.4						3.33	11.0
	17.5	13.375	0 - 1300		0 00 0 1 0.		_					1 0	
1				40.0		ess 10.5		Halliburto	Varocem	known	420	1.9	13.0
11	12.25	9.625	0 - 8405	40.0	N-80 Buttre	ess 10.5		Halliburto		known		1.9 3.53 1.29	11.0
PROD				40.0				Halliburto	Varocem on Light , Type Unl	known	420 678	3.53	11.0
	12.25	9.625	0 - 8405		N-80 Buttre P-110 Oth			Halliburto	Varocem on Light , Type Unl 50/50 Poz	known	420 678 492	3.53 1.29	11.0 14.0
	12.25 8.75	9.625	0 - 8405	20.0	N-80 Buttre	TTACHMENTS	AH OI		Varocem on Light , Type Unl 50/50 Poz		420 678 492 1327	3.53 1.29	11.0 14.0
PROD	12.25 8.75 VE	9.625	0 - 8405 0 - 13297 DWING ARE A	20.0	N-80 Buttre P-110 Oth A IN ACCORDAN	TTACHMENTS			Varocem on Light , Type Uni 50/50 Poz 50/50 Poz		420 678 492 1327	3.53 1.29	11.0 14.0
PROD W	12.25 8.75 VEF	9.625 5.5 RIFY THE FOLL	0 - 8405 0 - 13297 DWING ARE A	20.0	N-80 Buttre P-110 Oth A IN ACCORDAN ENGINEER	TTACHMENTS NCE WITH THE UT	MPLETE	IL AND GAS (Varocem on Light , Type Uni 50/50 Poz 50/50 Poz	ENERAL	420 678 492 1327	3.53 1.29	11.0 14.0
PROD	12.25 8.75 VEF	9.625 5.5 RIFY THE FOLL	0 - 8405 0 - 13297 DWING ARE A	20.0 ATTACHED RVEYOR OR EMENT (IF F	N-80 Buttre P-110 Oth A IN ACCORDAN ENGINEER FEE SURFACE)	TTACHMENTS NCE WITH THE UT FOR	MPLETE	IL AND GAS (Varocem on Light , Type Unit 50/50 Poz 50/50 Poz CONSERVATION G	ENERAL	420 678 492 1327	3.53 1.29	11.0 14.0
PROD W AF	12.25 8.75 VEF ELL PLAT OR N FIDAVIT OF ST.	9.625 5.5 RIFY THE FOLL MAP PREPARED BY ATUS OF SURFACE	0 - 8405 0 - 13297 DWING ARE A	20.0 ATTACHED RVEYOR OR EMENT (IF F	N-80 Buttre P-110 Oth A IN ACCORDAN ENGINEER EEE SURFACE) NTALLY DRILLED	TTACHMENTS NCE WITH THE UT FOR TOP	MPLETE	IL AND GAS (E DRILLING PL OPERATOR IS	Varocem on Light , Type Unit 50/50 Poz 50/50 Poz CONSERVATION G AN	ENERAL	420 678 492 1327	3.53 1.29	11.0 14.0
PROD W AF NAME DO	12.25 8.75 VEF ELL PLAT OR M FIDAVIT OF ST. RECTIONAL SU on Hamilton	9.625 5.5 RIFY THE FOLL MAP PREPARED BY ATUS OF SURFACE	0 - 8405 0 - 13297 DWING ARE A	20.0 ATTACHED RVEYOR OR EMENT (IF F	N-80 Buttre P-110 Oth A IN ACCORDAN ENGINEER FEE SURFACE) NTALLY DRILLED TITLE Permitti	TTACHMENTS NCE WITH THE UT FOR TOP	MPLETE	IL AND GAS (E DRILLING PL OPERATOR IS	Varocem on Light , Type Unit 50/50 Poz 50/50 Poz CONSERVATION G AN OTHER THAN THE LE	ENERAL EASE OWN	420 678 492 1327	3.53 1.29	11.0 14.0
PROD W AF	12.25 8.75 VEF ELL PLAT OR M FIDAVIT OF ST. RECTIONAL SU on Hamilton	9.625 5.5 RIFY THE FOLL MAP PREPARED BY ATUS OF SURFACE	0 - 8405 0 - 13297 DWING ARE A	20.0 ATTACHED RVEYOR OR EMENT (IF F	N-80 Buttre P-110 Oth A IN ACCORDAN ENGINEER EEE SURFACE) NTALLY DRILLED	TTACHMENTS NCE WITH THE UT FOR TOP	MPLETE	IL AND GAS (E DRILLING PL OPERATOR IS	Varocem on Light , Type Unit 50/50 Poz 50/50 Poz CONSERVATION G AN	ENERAL EASE OWN	420 678 492 1327	3.53 1.29	11.0 14.0
PROD W AF NAME DO SIGNATU API NUMI	12.25 8.75 VEF ELL PLAT OR M FIDAVIT OF ST. RECTIONAL SU on Hamilton	9.625 5.5 RIFY THE FOLL MAP PREPARED BY ATUS OF SURFAC	0 - 8405 0 - 13297 DWING ARE A	20.0 ATTACHED RVEYOR OR EMENT (IF F	N-80 Buttre P-110 Oth A IN ACCORDAN ENGINEER FEE SURFACE) NTALLY DRILLED TITLE Permitti	TTACHMENTS NCE WITH THE UT FOR TOP	MPLETE	IL AND GAS (E DRILLING PL OPERATOR IS	Varocem on Light , Type Unit 50/50 Poz 50/50 Poz CONSERVATION G AN OTHER THAN THE LE	ENERAL EASE OWN	420 678 492 1327	3.53 1.29	11.0 14.0

Newfield Production Company 15-10-3-2WH

Surface Hole Location: 368' FSL, 2311' FEL, Section 10, T3S, R2W Bottom Hole Location: 660' FNL, 1980' FEL, Section 10, T3S, R2W Duchesne County, UT

Drilling Program

1. Formation Tops

Uinta surface
Green River 3,706'
Garden Gulch member 6,644'
Uteland Butte member 8,832'

Lateral TD 9,125' TVD / 13,297' MD

2. Depth to Oil, Gas, Water, or Minerals

Base of moderately saline 1,379' (water)
Green River 6,644' - 8,832' (oil)
Uteland Butte member 8,832' - 9,125' (oil)

3. Pressure Control

Section BOP Description

Surface 12-1/4" Diverter

Intermediate The BOP and related equipment shall meet the minimum requirements of Onshore

Oil and Gas Order No. 2 for equipment and testing requirements, procedures, etc for

a 5M system.

Prod/Prod Liner The BOP and related equipment shall meet the minimum requirements of Onshore

Oil and Gas Order No. 2 for equipment and testing requirements, procedures, etc for

a 5M system.

A 5M BOP system will consist of 2 ram preventers (double or two singles) and an annular preventer (see attached diagram). A choke manifold rated to at least 5,000

psi will be used

4. Casing

	I	Interval				Pore Press	MW @	Frac	Safety Factors			
Description	Тор	Bottom (TVD/MD)	Weight (ppf)	Grade Coup		@ Shoe	Shoe	Grad @ Shoe	Burst	Collapse	Tension	
Conductor	0'	60'			Weld							
20	0	00			weid							
Surface	0'	1,500'	£ 4 £	J-55	STC	9.22	8.4	1.4	2,730	1,130	514,000	
13 3/8	0	1,500	54.5	J-33	SIC	8.33	8.4	14	2.68	2.24	6.29	
Intermediate	0'	8,381'	40	N 90	DTC	10	10.5	15	5,750	3,090	916,000	
9 5/8	0	8,405'	40	N-80	BTC	10	10.5	15	1.09	1.35	2.73	
Production	01	9,125'	20	D 110	DEC	1.4	145	16	12,360	11,080	641,000	
5 1/2	0'	13,297'	20	P-110	BTC	14	14.5	16	2.16	1.86	2.41	

Assumptions:

Surface casing MASP = (frac gradient + 1.0 ppg) - (gas gradient)

Intermediate casing MASP = (reservoir pressure) - (gas gradient)

Production casing MASP = (reservoir pressure) - (gas gradient)

Intermediate collapse calculations assume 50% evacuated

Maximum intermediate csg collapse load assumes loss of mud to a fluid level of

4,191'

Intermediate csg run from surface to

8,381' and will not experience full evacuation

Production csg run from surface to TD will isolate intermediate csg from production loads

Production csg withstands burst and collapse loads for anticipated production conditions

Surface & production collapse calcs assume fully evacuated casing w/a gas gradient

All tension calculations assume air weight of casing

Gas gradient = 0.1 psi/ft

All casing shall be new.

All casing strings shall have a minimum of 1 centralizer on each of the bottom 3 joints.

5. Cement

Job	Hole Size	Fill	Slurry Description	ft ³	OH excess	Weight (ppg)	Yield (ft³/sk)
Conductor	24	60'	Class G w/ 2% KCl + 0.25 lbs/sk Cello Flake	66 57	15%	15.8	1.17
Surface Lead	17 1/2	500'	Varicem (Type III) + .125 lbs/sk Cello Flakes	399 120	15%	11.0	3.33
Surface Tail	17 1/2	1,000'	Varicem (Type III) + .125 lbs/sk Cello Flakes	799 420	15%	13.0	1.9
Intermediate Lead	12 1/4	6,644'	HLC Premium - 35% Poz/65% Glass G + 10% bentonite	2393 678	15%	11.0	3.53
Intermediate Tail	12 1/4	1,761'	50/50 Poz/Class G + 1% bentonite	634 492	15%	14.0	1.29
Production Lead	8 3/4	0'	HLC Premium - 35% Poz/65% Glass G + 10% bentonite	0	15%	11.0	3.53
Production Tail	8 3/4	5,892'	50/50 Poz/Class G + 1% bentonite	1712 1327	15%	14.0	1.29

The surface casing will be cemented to surface. In the event that cement does not reach surface during the primary cement job, a remedial job will be performed.

Actual cement volumes for the intermediate casing string will be calculated from an open hole caliper log, plus 15% excess.

The 5.5" production string will be run from surface to TD and cemented to setback. The cement slurries will be adjusted for hole conditions and blend test results. The lateral will be cemented past the setback.

This well will not be perforated or produced outside the legal setbacks

6. Type and Characteristics of Proposed Circulating Medium

Interval Description

Surface - 1,500'

An air and/or fresh water system will be utilized. If an air rig is used, the blooie line discharge may be less than 100' from the wellbore in order to minimize location size. The blooie line is not equipped with an automatic igniter. The air compressor may be located less than 100' from the well bore due to the low possibility of combustion with the air/dust mixture. Water will be on location to be used as kill fluid, if necessary.

1,500' - 8,405'

A water based mud: Hole stability may be improved with additions of KCl or a similar inhibitive substance. In order to control formation pressure the system will be weighted with additions of bentonite, and if conditions warrant, with barite.

Anticipated maximum mud weight is 10.5 ppg.

8,405' - TD

One of two possible mud systems may be used depending on offset well performance on ongoing wells:

A water based mud: Hole stability may be improved with additions of KCl or a similar inhibitive substance. In order to control formation pressure the system will be weighted with additions of bentonite, and if conditions warrant, with barite.

-or-

A diesel based OBM system: with an oil to water ratio between 70/30 and 80/20. Emulsifiers and wetting agents will be used to maintain adequate mud properties. A water phase salinity will be maintained in the range of 25% using CaCl (Calcium Chloride). All cuttings will be dried and centrifuged so that they can be easily transferred to a lined cuttings pit with little to no free fluid on them. The cuttings will be mixed with fly ash prior to transportation to a location on Newfield owned surface. Once on Newfield owned surface, the cuttings will be treated with the previously approved FIRMUS process and used as a construction material on future location and/or roads on Newfield owned surface. The cuttings may also be transported to a state approved disposal facility.

Anticipated maximum mud weight is 14.5 ppg.

7. Logging, Coring, and Testing

Logging:

A dual induction, gamma ray, and caliper log will be run from KOP to the base of the surface casing. A compensated neutron/formation density log will be run from TD to the top of the Garden Gulch formation. A cement bond log will be run from KOP to the cement top behind the production casing and or intermediate casing.

Cores: As deemed necessary.

DST: There are no DST's planned for this well.

8. Anticipated Abnormal Pressure or Temperature

Maximum anticipated bottomhole pressure will be approximately equal to total depth (feet) multiplied by a 0.73 psi/ft gradient.

$$9,125' \text{ x}$$
 0.73 psi/ft = 6643 psi

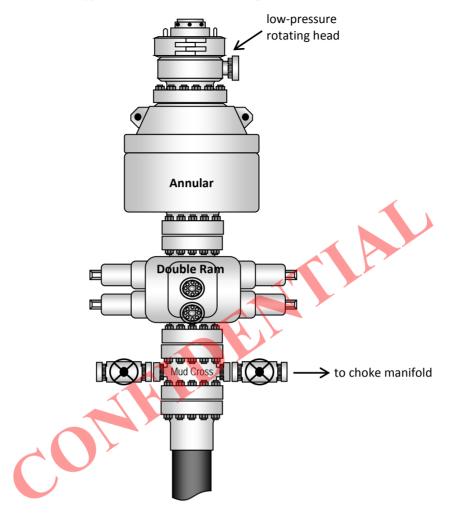
No abnormal temperature is expected. No H₂S is expected.

9. Other Aspects

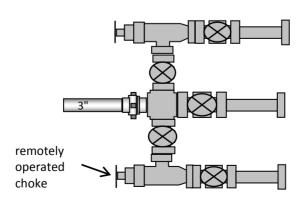
The lateral of this well will target the Uteland Butte member of the Green River formation

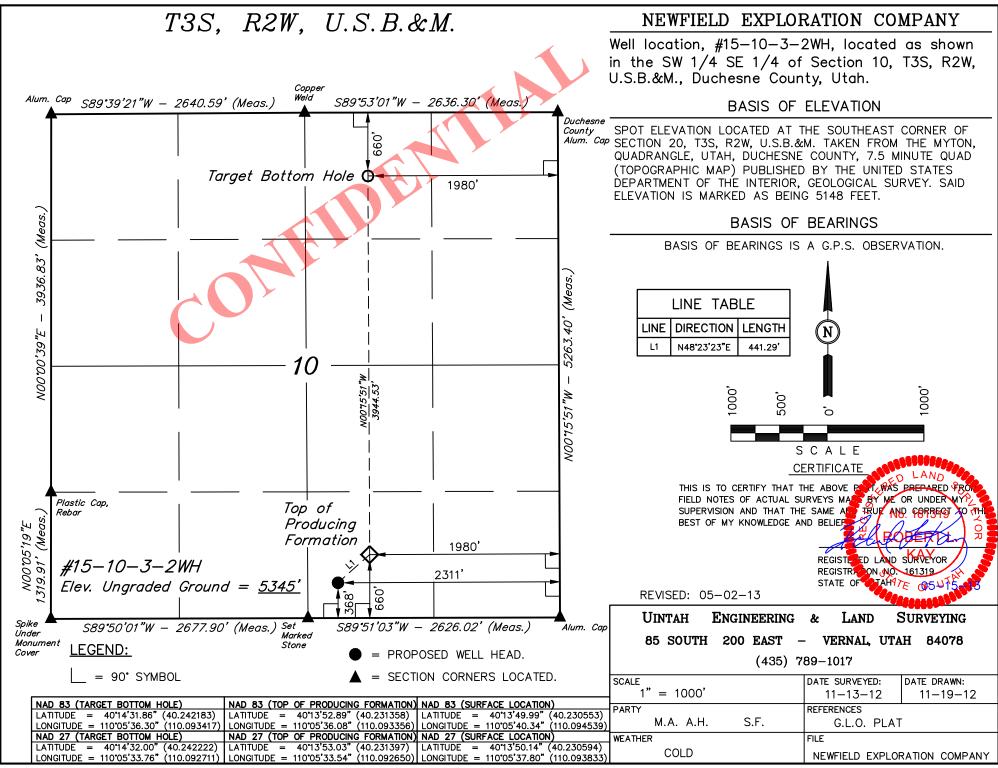
After setting 9-5/8" casing, an 8-3/4" vertical hole will be drilled to a kick off point of 8,405'

Directional tools will then be used to build to 87.17 degrees inclination.

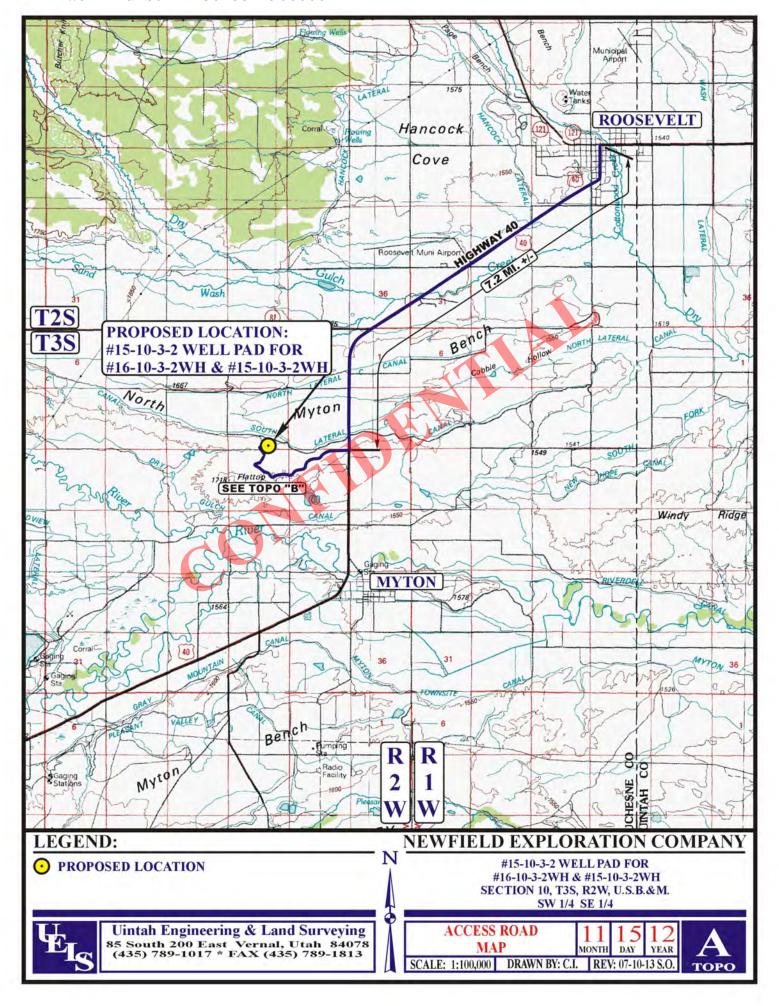

The lateral will be drilled to the bottomhole location shown on the plat. A 5-1/2" longstring will be run from surface to TD and cemented in place.

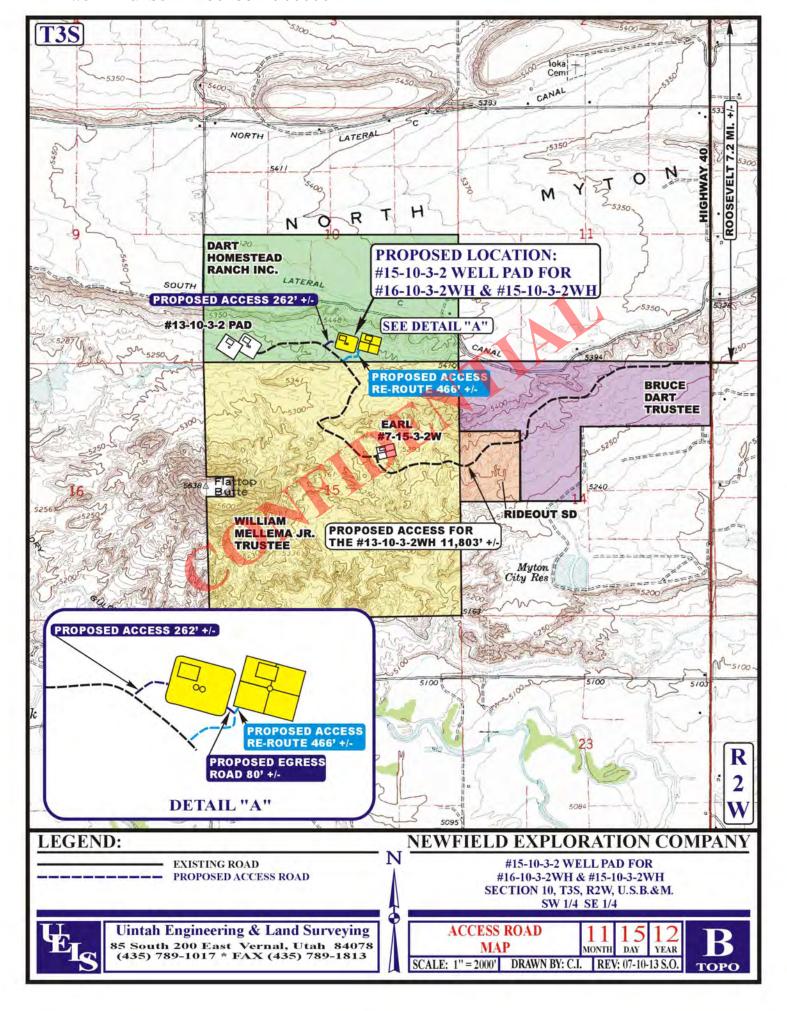
Newfield requests the following variances from Onshore Order #2:

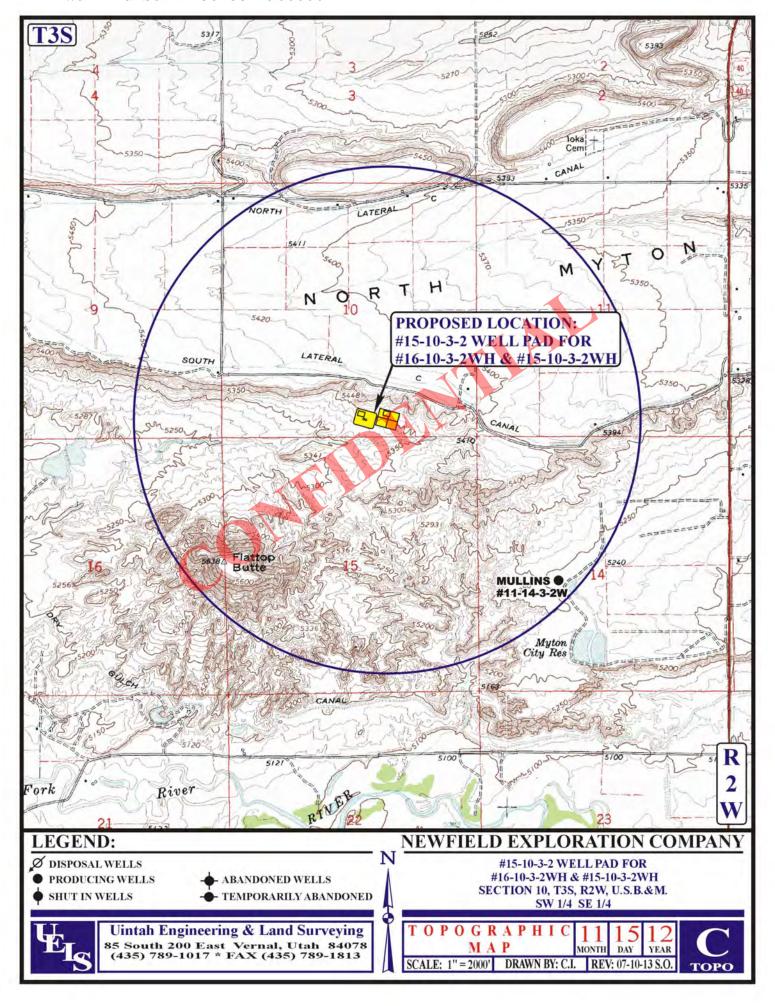

Variance from Onshoer Order #2, III.E.1
 Refer to Newfield Production Company Standard Operating Practices "Ute Tribal Green River Development Program" paragraph 9.0

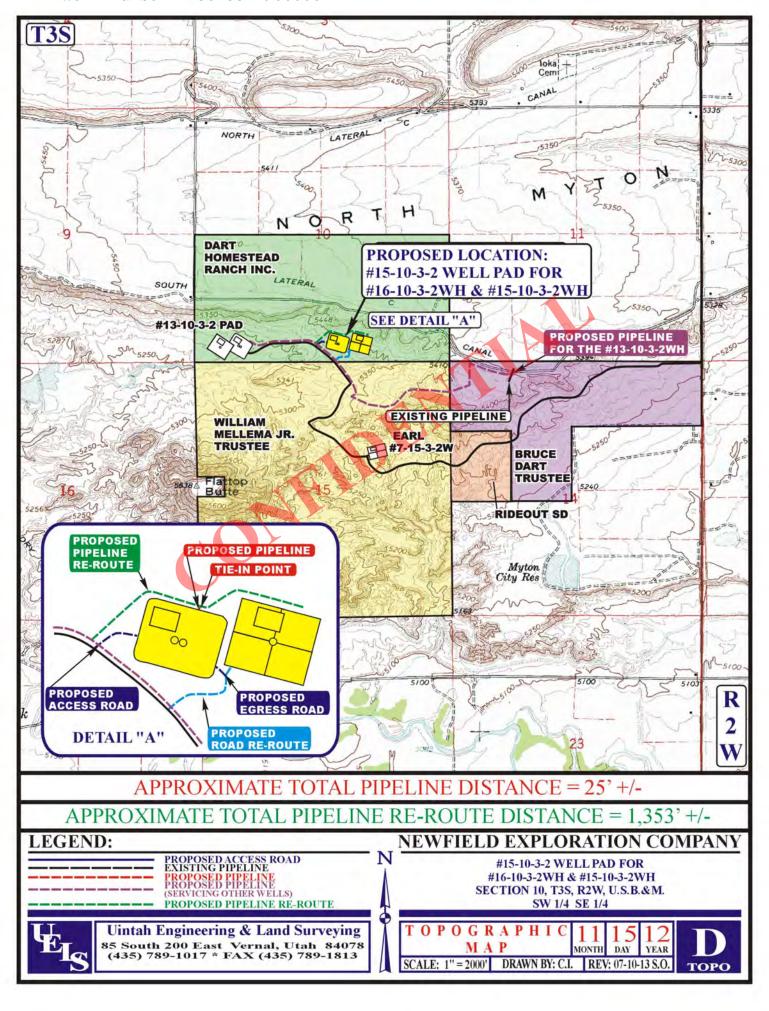

If oil based mud (OBM) is used and If Newfield owns the surface rights on the same drilling site at a location where construction is desired, the cuttings may be used for construction by a Firmus® process at that location. Otherwise, after the cuttings have been made safe for transport as described in paragraph 6, they will be transported to another location on which Newfield owns surface rights and there mixed, as part of a Firmus® process, with at least one additional chemical that will convert them to a temporarily uncured cementitious mixture that will be placed and shaped into a temporary desired final structure that will spontaneously harden within seven days after placement to form the desired structure. Samples of the temporary desired final structure may be taken for testing as described below (after the samples have hardened), or samples of the starting pretreated cuttings and mud will be taken during the construction and later mixed in a laboratory, molded, and cured to simulate the final structure as well as reasonably possible. Either these laboratory-made simulations of the final structure or samples of the temporary mixture itself after hardening, will be mechanically tested directly to determine their unconfined compressive strength and their hydraulic conductivity. Leachates of the mechanically tested structures themselves or of finer particles made by crushing and size-grading of the mechanically tested structures themselves to a specified particle size range will be analyzed, according to specified methods, for their contents of arsenic, barium, cadmium, chromium, lead, mercury, selenium, silver, zinc, benzene, total petroleum hydrocarbons (TPH), and chlorides, and the pH of these leachates will also be measured. The results of all these tests will be reported by Newfield to UDOGM at intervals as requested, along with the latitude and longitude (or other comparable location data) of the site of the useful constructions built.

Typical 5M BOP stack configuration




Typical 5M choke manifold configuration





RECEIVED: July 12, 2013



LEAM Drilling Systems, Inc. FOR

NEWFIELD EXPLORATION ROCKY MOUNTAINS WELL: 15-10-3-2WH (PLAN: REV00)

DUCHESNE COUNTY, UTAH RIG NAME: RIG (KB= 18') MAY 23, 2013 -- WELL PLAN PLOT

Planning Report

Database: EDM 5000.1 Lynn Db

Company: **NEWFIELD EXPLORATION ROCKY**

MOUNTAINS

DUCHESNE COUNTY, UT (NAD 83) Project:

Site: CENTRAL BASIN (NAD 83)

Well: 15-10-3-2WH Wellbore: 15-10-3-2WH Design: 15-10-3-2WH REV00 Local Co-ordinate Reference:

TVD Reference:

MD Reference:

North Reference:

Survey Calculation Method:

Well 15-10-3-2WH

WELL(5346'+18'= 5,364' MSL) @ 5364.00usft

(RIG (KB= 18'))

WELL(5346'+18'= 5,364' MSL) @ 5364.00usft

(RIG (KB= 18'))

True

Minimum Curvature

Project DUCHESNE COUNTY, UT (NAD 83),

Map System: US State Plane 1983 North American Datum 1983

Geo Datum:

Utah Central Zone Map Zone:

System Datum: Mean Sea Level

CENTRAL BASIN (NAD 83) Site

Northing: 7,254,409.48 usft Site Position: Latitude: From: Lat/Long Easting: 1,986,891.62 usft Longitude:

Position Uncertainty: 0.00 usft **Slot Radius:** 13-3/16 " **Grid Convergence:**

0.00

40° 13' 43.080 N 110° 15' 32.490 W

0.79°

Well 15-10-3-2WH, Sec. 10, T3S-R2W,

Well Position 736.14 usft 7,255,782.78 usft 40° 13' 49.938 N +N/-S Northing: Latitude:

2,032,807.24 usft +E/-W 45.930.26 usft Easting: Longitude: 110° 5' 40.259 W

Position Uncertainty 0.00 usft Wellhead Elevation: 5.364.00 usft Ground Level: 5.346.00 usft

Wellbore 15-10-3-2WH

Sample Date Declination Field Strength Magnetics **Model Name Dip Angle** (°) (°) (nT)

IGRF2010 5/23/2013 11.11 65.89 52,176

0.00

Design 15-10-3-2WH REV00

Audit Notes:

Version: REV00 **PLAN** Tie On Depth: 0.00 Phase:

+N/-S +E/-W Direction **Vertical Section:** Depth From (TVD) (usft) (usft) (usft) (°)

0.00

Plan Sections	s									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)	TFO (°)	Target
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
2,500.00	0.00	0.00	2,500.00	0.00	0.00	0.00	0.00	0.00	0.00	
2,800.01	6.00	136.51	2,799.46	-11.39	10.80	2.00	2.00	0.00	136.51	
7,114.72	6.00	136.51	7,090.54	-338.61	321.20	0.00	0.00	0.00	0.00	
7,414.73	0.00	0.00	7,390.00	-350.00	332.00	2.00	-2.00	0.00	180.00	
8,405.73	0.00	0.00	8,381.00	-350.00	332.00	0.00	0.00	0.00	0.00	
9,170.92	84.17	0.00	8,899.18	117.96	332.00	11.00	11.00	0.00	0.00	
9,355.92	84.17	0.00	8,917.97	302.01	332.00	0.00	0.00	0.00	0.00	
9,555.92	84.17	0.00	8,938.28	500.97	332.00	0.00	0.00	0.00	0.00	
9,657.88	87.17	359.40	8,945.98	602.64	331.47	3.00	2.94	-0.59	-11.30	
13,297.89	87.17	359.40	9,125.70	4,238.00	293.40	0.00	0.00	0.00	0.00	TD-PBHL (15-10-3

0.00

Database: EDM 5000.1 Lynn Db

Company: NEWFIELD EXPLORATION ROCKY

MOUNTAINS

Project: DUCHESNE COUNTY, UT (NAD 83)

Site: CENTRAL BASIN (NAD 83)

Well: 15-10-3-2WH
Wellbore: 15-10-3-2WH
Design: 15-10-3-2WH REV00

Local Co-ordinate Reference:

TVD Reference:

MD Reference:

North Reference: Survey Calculation Method: Well 15-10-3-2WH

WELL(5346'+18'= 5,364' MSL) @ 5364.00usft

(RIG (KB= 18'))

WELL(5346'+18'= 5,364' MSL) @ 5364.00usft

(RIG (KB= 18'))

True

nned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
100.00	0.00	0.00	100.00	0.00	0.00	0.00	0.00	0.00	0.00
200.00	0.00	0.00	200.00	0.00	0.00	0.00	0.00	0.00	0.00
300.00	0.00	0.00	300.00	0.00	0.00	0.00	0.00	0.00	0.00
400.00	0.00	0.00	400.00	0.00	0.00	0.00	0.00	0.00	0.00
500.00	0.00	0.00	500.00	0.00	0.00	0.00	0.00	0.00	0.00
600.00	0.00	0.00	600.00	0.00	0.00	0.00	0.00	0.00	0.00
700.00	0.00	0.00	700.00	0.00	0.00	0.00	0.00	0.00	0.00
800.00	0.00	0.00	800.00	0.00	0.00	0.00	0.00	0.00	0.00
900.00	0.00	0.00	900.00	0.00	0.00	0.00	0.00	0.00	0.00
1,000.00	0.00	0.00	1,000.00	0.00	0.00	0.00	0.00	0.00	0.00
1,100.00	0.00	0.00	1,100.00	0.00	0.00	0.00	0.00	0.00	0.00
1,200.00	0.00	0.00	1,200.00	0.00	0.00	0.00	0.00	0.00	0.00
1,300.00	0.00	0.00	1,300.00	0.00	0.00	0.00	0.00	0.00	0.00
1,400.00	0.00	0.00	1,400.00	0.00	0.00	0.00	0.00	0.00	0.00
1,500.00	0.00	0.00	1,500.00	0.00	0.00	0.00	0.00	0.00	0.00
1,600.00	0.00	0.00	1,600.00	0.00	0.00	0.00	0.00	0.00	0.00
1,700.00	0.00	0.00	1,700.00	0.00	0.00	0.00	0.00	0.00	0.00
1,800.00	0.00	0.00	1,800.00	0.00	0.00	0.00	0.00	0.00	0.00
1,900.00	0.00	0.00	1,900.00	0.00	0.00	0.00	0.00	0.00	0.00
2,000.00	0.00	0.00	2,000.00	0.00	0.00	0.00	0.00	0.00	0.00
2,100.00	0.00	0.00	2,100.00	0.00	0.00	0.00	0.00	0.00	0.00
2,200.00	0.00	0.00	2,200.00	0.00	0.00	0.00	0.00	0.00	0.00
2,300.00	0.00	0.00	2,300.00	0.00	0.00	0.00	0.00	0.00	0.00
2,400.00	0.00	0.00	2,400.00	0.00	0.00	0.00	0.00	0.00	0.00
2,500.00	0.00 P-Build= 2.00/	0.00	2,500.00	0.00	0.00	0.00	0.00	0.00	0.00
2,600.00	2.00	136.51	2,599.98	-1.27	1.20	-1.27	2.00	2.00	0.00
2,700.00	4.00	136.51	2,699.84	-5.06	4.80	-5.06	2.00	2.00	0.00
2,800.01	6.00	136.51	2,799.46	-11.39	10.80	-11.39	2.00	2.00	0.00
EOB-Tang 2,900.00	gent= 4314.71 f 6.00	t at 2800.01 M 136.51	D 2,898.90	-18.97	17.99	-18.97	0.00	0.00	0.00
3,000.00	6.00	136.51	2,998.36	-26.55	25.19	-26.55	0.00	0.00	0.00
3,100.00	6.00	136.51	3,097.81	-34.14	32.38	-34.14	0.00	0.00	0.00
3,200.00	6.00	136.51	3,197.26	-41.72	39.58	-41.72	0.00	0.00	0.00
3,300.00	6.00	136.51	3,296.71	-49.31	46.77	-49.31	0.00	0.00	0.00
3,400.00	6.00	136.51	3,396.16	-56.89	53.96	-56.89	0.00	0.00	0.00
3,500.00	6.00	136.51	3,495.62	-64.47	61.16	-64.47	0.00	0.00	0.00
3,600.00	6.00	136.51	3,595.07	-72.06	68.35	-72.06	0.00	0.00	0.00
3,700.00	6.00	136.51	3,694.52	-79.64	75.55	-79.64	0.00	0.00	0.00
3,800.00	6.00	136.51	3,793.97	-87.23	82.74	-87.23	0.00	0.00	0.00
3,900.00	6.00	136.51	3,893.43	-94.81	89.93	-94.81	0.00	0.00	0.00
4,000.00	6.00	136.51	3,992.88	-102.39	97.13	-102.39	0.00	0.00	0.00
4,100.00	6.00	136.51	4,092.33	-109.98	104.32	-109.98	0.00	0.00	0.00
4,200.00	6.00	136.51	4,191.78	-117.56	111.52	-117.56	0.00	0.00	0.00
4,300.00	6.00	136.51	4,291.23	-125.15	118.71	-125.15	0.00	0.00	0.00
4,400.00	6.00	136.51	4,390.69	-132.73	125.90	-132.73	0.00	0.00	0.00
4,500.00	6.00	136.51	4,490.14	-140.31	133.10	-140.31	0.00	0.00	0.00
4,600.00	6.00	136.51	4,589.59	-147.90	140.29	-147.90	0.00	0.00	0.00
4,700.00	6.00	136.51	4,689.04	-155.48	147.49	-155.48	0.00	0.00	0.00
4,800.00	6.00	136.51	4,788.50	-163.07	154.68	-163.07	0.00	0.00	0.00
4,900.00	6.00	136.51	4,887.95	-170.65	161.87	-170.65	0.00	0.00	0.00

EDM 5000.1 Lynn Db Database:

NEWFIELD EXPLORATION ROCKY Company:

MOUNTAINS

Project: DUCHESNE COUNTY, UT (NAD 83)

Site: CENTRAL BASIN (NAD 83)

Well: 15-10-3-2WH Wellbore: 15-10-3-2WH Design: 15-10-3-2WH REV00 **Local Co-ordinate Reference:**

TVD Reference:

MD Reference:

North Reference:

Survey Calculation Method:

Well 15-10-3-2WH

WELL(5346'+18'= 5,364' MSL) @ 5364.00usft

(RIG (KB= 18'))

WELL(5346'+18'= 5,364' MSL) @ 5364.00usft

(RIG (KB= 18'))

True

· ·									
Planned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
5,000.00	6.00	136.51	4,987.40	-178.23	169.07	-178.23	0.00	0.00	0.00
5,100.00	6.00	136.51	5,086.85	-185.82	176.26	-185.82	0.00	0.00	0.00
5,200.00	6.00	136.51	5,186.30	-193.40	183.45	-193.40	0.00	0.00	0.00
5,300.00	6.00	136.51	5,285.76	-200.99	190.65	-200.99	0.00	0.00	0.00
5,400.00	6.00	136.51	5,385.21	-208.57	197.84	-208.57	0.00	0.00	0.00
5,500.00	6.00	136.51	5,484.66	-216.15	205.04	-216.15	0.00	0.00	0.00
5,600.00	6.00	136.51	5,584.11	-223.74	212.23	-223.74	0.00	0.00	0.00
5,700.00	6.00	136.51	5,683.56	-231.32	219.42	-231.32	0.00	0.00	0.00
5,800.00	6.00	136.51	5,783.02	-238.91	226.62	-238.91	0.00	0.00	0.00
5,900.00	6.00	136.51	5,882.47	-246.49	233.81	-246.49	0.00	0.00	0.00
6,000.00 6,100.00 6,200.00 6,300.00 6,400.00	6.00 6.00 6.00 6.00 6.00	136.51 136.51 136.51 136.51 136.51	5,981.92 6,081.37 6,180.83 6,280.28 6,379.73	-254.07 -261.66 -269.24 -276.82 -284.41	241.01 248.20 255.39 262.59 269.78	-254.07 -261.66 -269.24 -276.82 -284.41	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00
6,500.00	6.00	136.51	6,479.18		276.98	-291.99	0.00	0.00	0.00
6,600.00	6.00	136.51	6,578.63		284.17	-299.58	0.00	0.00	0.00
6,700.00	6.00	136.51	6,678.09		291.36	-307.16	0.00	0.00	0.00
6,800.00	6.00	136.51	6,777.54		298.56	-314.74	0.00	0.00	0.00
6,900.00	6.00	136.51	6,876.99		305.75	-322.33	0.00	0.00	0.00
7,000.00 7,100.00 7,114.72	6.00 6.00 6.00 p= -2.00/100' I	136.51 136.51 136.51	6,976.44 7,075.89 7,090.54	-329.91 -337.50 -338.61	312.95 320.14 321.20	-329.91 -337.50 -338.61	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00
7,200.00	4.29	136.51	7,175.47	-344.16	326.46	-344.16	2.00	-2.00	0.00
7,300.00	2.29	136.51	7,275.30	-348.33	330.42	-348.33	2.00	-2.00	0.00
7,400.00 7,414.73 Nudge Ver t	0.29 0.00 t Pt= 7414.73 l	136.51 0.00 MD-7390.00 T	7,375.27 7,390.00	-349.97 -350.00	331.97 332.00	-349.97 -350.00	2.00 2.00	-2.00 -2.00	0.00 0.00
7,500.00	0.00	0.00	7,475.27	-350.00	332.00	-350.00	0.00	0.00	0.00
7,600.00	0.00	0.00	7,575.27	-350.00	332.00	-350.00	0.00	0.00	0.00
7,700.00	0.00	0.00	7,675.27	-350.00	332.00	-350.00	0.00	0.00	0.00
7,800.00	0.00	0.00	7,775.27	-350.00	332.00	-350.00	0.00	0.00	0.00
7,900.00	0.00	0.00	7,875.27	-350.00	332.00	-350.00	0.00	0.00	0.00
8,000.00	0.00	0.00	7,975.27	-350.00	332.00	-350.00	0.00	0.00	0.00
8,100.00	0.00	0.00	8,075.27	-350.00	332.00	-350.00	0.00	0.00	0.00
8,200.00	0.00	0.00	8,175.27	-350.00	332.00	-350.00	0.00	0.00	0.00
8,300.00	0.00	0.00	8,275.27	-350.00	332.00	-350.00	0.00	0.00	0.00
8,405.73	0.00		8,381.00	-350.00	332.00	-350.00	0.00	0.00	0.00
	P- Build= 11.0		0.405.04	0.40.40	000.00	0.40.46	44.00	44.00	0.00
8,450.00	4.87	0.00	8,425.21	-348.12	332.00	-348.12	11.00	11.00	0.00
8,500.00	10.37	0.00	8,474.75	-341.49	332.00	-341.49	11.00	11.00	0.00
8,550.00	15.87	0.00	8,523.43	-330.15	332.00	-330.15	11.00	11.00	0.00
8,600.00	21.37	0.00	8,570.79	-314.19	332.00	-314.19	11.00	11.00	0.00
8,650.00	26.87	0.00	8,616.41	-293.77	332.00	-293.77	11.00	11.00	0.00
8,700.00	32.37	0.00	8,659.86	-269.06	332.00	-269.06	11.00	11.00	0.00
8,750.00	37.87	0.00	8,700.74	-240.31	332.00	-240.31	11.00	11.00	0.00
8,800.00	43.37	0.00	8,738.68	-207.77	332.00	-207.77	11.00	11.00	0.00
8,850.00	48.87	0.00	8,773.33	-171.75	332.00	-171.75	11.00	11.00	0.00
8,900.00	54.37	0.00	8,804.36	-132.57	332.00	-132.57	11.00	11.00	0.00
8,950.00	59.87	0.00	8,831.49	-90.59	332.00	-90.59	11.00	11.00	0.00

Database: EDM 5000.1 Lynn Db

Company: NEWFIELD EXPLORATION ROCKY

MOUNTAINS

Project: DUCHESNE COUNTY, UT (NAD 83)

Site: CENTRAL BASIN (NAD 83)

Well: 15-10-3-2WH
Wellbore: 15-10-3-2WH
Design: 15-10-3-2WH REV00

Local Co-ordinate Reference:

TVD Reference:

MD Reference:

North Reference: Survey Calculation Method: Well 15-10-3-2WH

WELL(5346'+18'= 5,364' MSL) @ 5364.00usft

(RIG (KB= 18'))

WELL(5346'+18'= 5,364' MSL) @ 5364.00usft

(RIG (KB= 18'))

True

nned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
9,000.00 9,050.00	65.37 70.87	0.00 0.00	8,854.48 8,873.10	-46.21 0.17	332.00 332.00	-46.21 0.17	11.00 11.00	11.00 11.00	0.00 0.00
9,100.00 9,106.49	76.37 77.08	0.00 0.00	8,887.20 8,888.69	48.12 54.44	332.00 332.00	48.12 54.44	11.00 11.00	11.00 11.00	0.00 0.00
9,150.00	81.87	0.00	8,896.64	97.20	332.00	97.20	11.00	11.00	0.00
9,170.92	84.17	0.00	8,899.18	117.96	332.00	117.96	11.00	11.00	0.00
9,200.00	84.17° Angle= 84.17	9170.92 MD- 8		146.90	332.00	146.90	0.00	0.00	0.00
			8,902.13						
9,259.75 Uteland B	84.17 utte C-PZ1	0.00	8,908.20	206.33	332.00	206.33	0.00	0.00	0.00
9,300.00 9,355.92	84.17 84.17	0.00 0.00	8,912.29 8,917.97	246.38 302.01	332.00 332.00	246.38 302.01	0.00 0.00	0.00 0.00	0.00 0.00
	200 ft at 9355.9				·				
9,400.00 9,500.00	84.17 84.17	0.00 0.00	8,922.45 8,932.60	345.86 445.34	332.00 332.00	345.86 445.34	0.00 0.00	0.00 0.00	0.00 0.00
9,555.92	84.17 S= 3.00/100' M [0.00	8,938.28	500.97	332.00	500.97	0.00	0.00	0.00
9,600.00	85.47	359.74	8,942.27	544.87	331.90	544.87	3.00	2.94	-0.59
9,630.58	86.37	359.56	8,944.44	575.38	331.71	575.38	3.00	2.94	-0.59
	utte C-PZ2 HZ								
9,657.88	87.17	359.40	8,945.98	602.64	331.47	602.64	3.00	2.94	-0.59
Land Pt. H	Z Tgt= 87.17°	Angle= 9657.8	8 MD- 8945.98	TVD					
9,700.00	87.17	359.40	8,948.06	644.70	331.03	644.70	0.00	0.00	0.00
9,800.00 9,900.00	87.17 87.17	359.40 359.40	8,953.00 8,957.94	744.57 844.44	329.98 328.93	744.57 844.44	0.00 0.00	0.00 0.00	0.00 0.00
10,000.00	87.17	359.40	8,962.87	944.31	327.89	944.31	0.00	0.00	0.00
10,100.00	87.17	359.40	8,967.81	1,044.19	326.84	1,044.19	0.00	0.00	0.00
10,200.00	87.17	359.40	8,972.75	1,144.06	325.80	1,144.06	0.00	0.00	0.00
10,300.00	87.17	359.40	8,977.68	1,243.93	324.75	1,243.93	0.00	0.00	0.00
10,400.00	87.17	359.40	8,982.62	1,343.80	323.70	1,343.80	0.00	0.00	0.00
10,500.00	87.17	359.40	8,987.56	1,443.68	322.66	1,443.68	0.00	0.00	0.00
10,600.00 10,700.00	87.17 87.17	359.40 359.40	8,992.50 8,997.43	1,543.55 1,643.42	321.61 320.57	1,543.55 1,643.42	0.00 0.00	0.00 0.00	0.00 0.00
			•	•					
10,800.00 10,900.00	87.17 87.17	359.40 359.40	9,002.37 9,007.31	1,743.29 1,843.17	319.52 318.48	1,743.29 1,843.17	0.00 0.00	0.00 0.00	0.00 0.00
11,000.00	87.17	359.40	9,007.31	1,943.17	317.43	1,943.17	0.00	0.00	0.00
11,100.00	87.17	359.40	9,017.18	2,042.91	316.38	2,042.91	0.00	0.00	0.00
11,200.00	87.17	359.40	9,022.12	2,142.79	315.34	2,142.79	0.00	0.00	0.00
11,300.00	87.17	359.40	9,027.06	2,242.66	314.29	2,242.66	0.00	0.00	0.00
11,400.00	87.17	359.40	9,031.99	2,342.53	313.25	2,342.53	0.00	0.00	0.00
11,500.00	87.17	359.40	9,036.93	2,442.40	312.20	2,442.40	0.00	0.00	0.00
11,600.00 11,700.00	87.17 87.17	359.40 359.40	9,041.87	2,542.28	311.15	2,542.28 2,642.15	0.00 0.00	0.00	0.00 0.00
-	87.17	359.40	9,046.81	2,642.15	310.11			0.00	
11,800.00 11,900.00	87.17 97.17	359.40	9,051.74	2,742.02	309.06	2,742.02	0.00	0.00	0.00
11,900.00	87.17 87.17	359.40 359.40	9,056.68 9,061.62	2,841.89 2,941.77	308.02 306.97	2,841.89 2,941.77	0.00 0.00	0.00 0.00	0.00 0.00
12,100.00	87.17	359.40	9,066.56	3,041.64	305.92	3,041.64	0.00	0.00	0.00
12,200.00	87.17	359.40	9,071.49	3,141.51	304.88	3,141.51	0.00	0.00	0.00
12,300.00	87.17	359.40	9,076.43	3,241.38	303.83	3,241.38	0.00	0.00	0.00
12,400.00	87.17	359.40	9,081.37	3,341.26	302.79	3,341.26	0.00	0.00	0.00

EDM 5000.1 Lynn Db Database:

NEWFIELD EXPLORATION ROCKY Company:

MOUNTAINS

Project: DUCHESNE COUNTY, UT (NAD 83)

Site: CENTRAL BASIN (NAD 83)

Well: 15-10-3-2WH Wellbore: 15-10-3-2WH Design: 15-10-3-2WH REV00 **Local Co-ordinate Reference:**

TVD Reference:

MD Reference:

North Reference:

Survey Calculation Method:

Well 15-10-3-2WH

WELL(5346'+18'= 5,364' MSL) @ 5364.00usft

(RIG (KB= 18'))

WELL(5346'+18'= 5,364' MSL) @ 5364.00usft

(RIG (KB= 18'))

True

Planned Survey									
Measured Depth (usft)	Inclination (°)	Azimuth (°)	Vertical Depth (usft)	+N/-S (usft)	+E/-W (usft)	Vertical Section (usft)	Dogleg Rate (°/100usft)	Build Rate (°/100usft)	Turn Rate (°/100usft)
12,500.00 12,600.00 12,700.00	87.17	359.40 359.40 359.40	9,086.30 9,091.24 9,096.18	3,441.13 3,541.00 3,640.87	301.74 300.70 299.65	3,441.13 3,541.00 3,640.87	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00
12,800.00 12,900.00 13,000.00	87.17	359.40 359.40 359.40	9,101.12 9,106.05 9,110.99	3,740.75 3,840.62 3,940.49	298.60 297.56 296.51	3,740.75 3,840.62 3,940.49	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00
13,100.00 13,200.00	87.17	359.40 359.40	9,115.93 9,120.87	4,040.36 4,140.24	295.47 294.42	4,040.36 4,140.24	0.00	0.00	0.00
13,297.89 TD-PBHL	87.17 = 13297.89 MD -	359.40 • 9125.70 TVD	9,125.70	4,238.00	293.40	4,238.00	0.00	0.00	0.00

Design Targets									
Target Name - hit/miss target - Shape	Dip Angle (°)	Dip Dir. (°)	TVD (usft)	+N/-S (usft)	+E/-W (usft)	Northing (usft)	Easting (usft)	Latitude	Longitude
Sec. 10, T3S-R2W, - plan misses ta - Polygon Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 Point 7 Point 8	0.00 rget center by		-16.00 t at 0.00us -16.00 -16.00 -16.00 -16.00 -16.00 -16.00 -16.00	4,904.88 ft MD (0.00 7 0.00 -2,629.83 -5,261.67 -5,272.68 -5,284.51 -28.86 -9.00 0.00	2,283.48 IVD, 0.00 N, 0.00 18.26 31.87 -2,593.37 -5,269.81 -5,274.97 -2,635.56 0.00	7,260,722.93 0.00 E) 7,260,722.93 7,258,093.71 7,255,462.41 7,255,410.15 7,255,356.27 7,260,611.19 7,260,672.52 7,260,722.93	2,035,013.37 2,035,072.95 2,035,127.91 2,032,503.16 2,029,827.24 2,029,739.50 2,032,378.27 2,035,013.37	40° 14' 38.410 N	110° 5' 10.810 W
Sec. 10, T3S-R2W, - plan misses ta - Polygon Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 Point 7 Point 8			-16.00 t at 0.00us -16.00 -16.00 -16.00 -16.00 -16.00 -16.00 -16.00	4,244.08 ft MD (0.00 7 0.00 -1,972.11 -3,942.21 -3,950.94 -3,959.59 -61.87 -6.72 0.00	1,626.77 IVD, 0.00 N, 0.00 14.61 24.57 -1,940.63 -3,955.47 -3,959.17 -1,976.52 0.00	7,260,051.89 0.00 E) 7,260,051.89 7,258,080.26 7,256,110.55 7,256,070.95 7,256,030.64 7,259,927.82 7,260,014.12 7,260,051.89	2,034,367.12 2,034,412.71 2,034,453.63 2,032,488.81 2,030,474.35 2,030,409.41 2,032,390.95 2,034,367.12	40° 14′ 31.880 N	110° 5' 19.280 W
- Point TD-PBHL (15-10-3-2	2V 0.00	6.40usft at 0.00	9,126.00	4,238.00	292.65	7,256,084.01 5.46 N, 332.00 E) 7,260,024.85 38.00 N, 293.40	2,033,033.26	40° 13' 52.863 N 40° 14' 31.820 N	110° 5' 35.933 W 110° 5' 36.485 W

Project:

Planning Report

EDM 5000.1 Lynn Db Database:

NEWFIELD EXPLORATION ROCKY Company:

MOUNTAINS

DUCHESNE COUNTY, UT (NAD 83)

Site: CENTRAL BASIN (NAD 83)

Well: 15-10-3-2WH Wellbore: 15-10-3-2WH Design: 15-10-3-2WH REV00 **Local Co-ordinate Reference:**

TVD Reference:

MD Reference:

North Reference:

Survey Calculation Method:

Well 15-10-3-2WH

WELL(5346'+18'= 5,364' MSL) @ 5364.00usft

(RIG (KB= 18'))

WELL(5346'+18'= 5,364' MSL) @ 5364.00usft

(RIG (KB= 18'))

True

Formations						
	Measured Depth (usft)	Vertical Depth (usft)	Name	Lithology	Dip (°)	Dip Direction (°)
	9,106.49	8,888.69	Uteland Butte C		2.83	0.00
	9,259.75	8,908.20	Uteland Butte C-PZ1		2.83	0.00
	9,630.58	8,944.44	Uteland Butte C-PZ2 HZ Tgt		2.83	0.00

Plan Annotations				
Measure Depth (usft)	d Vertical Depth (usft)	Local Coord +N/-S (usft)	dinates +E/-W (usft)	Comment
2,500.0	2,500.00	0.00	0.00	Nudge KOP-Build= 2.00/100' MD
2,800.	2,799.46	-11.39	10.80	EOB-Tangent= 4314.71 ft at 2800.01 MD
7,114.	7,090.54	-338.61	321.20	Nudge Drop= -2.00/100' MD
7,414.	7,390.00	-350.00	332.00	Nudge Vert Pt= 7414.73 MD-7390.00 TVD
8,405.	73 8,381.00	-350.00	332.00	Curve- KOP- Build= 11.00°/100' MD
9,170.	92 8,899.18	117.96	332.00	Land Pt.= 84.17° Angle= 9170.92 MD- 8899.18 TVD
9,355.	92 8,917.97	302.01	332.00	Tangent= 200 ft at 9355.92 MD
9,555.	92 8,938.28	500.97	332.00	Curve DLS= 3.00/100' MD- TFO -11.30
9,657.	8,945.98	602.64	331.47	Land Pt. HZ Tgt= 87.17° Angle= 9657.88 MD- 8945.98 TVD
13,297.	9,125.70	4,238.00	293.40	TD-PBHL= 13297.89 MD- 9125.70 TVD

AFFIDAVIT OF EASEMENT, RIGHT-OF-WAY AND SURFACE USE AGREEMENT

<u>Peter Burns</u> personally appeared before me, being duly sworn, deposes and with respect to State of Utah R649-3-34.7 says:

- 1. My name is <u>Peter Burns</u>. I am a Landman for Newfield Production Company, whose address is 1001 17th Street, Suite 2000, Denver, CO 80202 ("Newfield").
- 2. Newfield is the Operator of the proposed <u>Dart 15-10-3-2WH</u> well with a surface location to be positioned in the <u>SWSE</u> of Section <u>10</u>, Township <u>3</u> South, Range <u>2</u> West (the "Drillsite Location"), and a bottom hole location to be positioned in the <u>NWNE</u> of Section <u>10</u>, Township <u>3</u> South, Range <u>2</u> West, <u>Duchesne County, Utah</u>. The surface owner of the Drillsite Location is <u>Dart Homestead Ranch</u>, whose address is <u>Route 2</u>, <u>Box 2044</u>, <u>Roosevelt</u>, <u>UT 84066</u> ("Surface Owner").
- 3. Newfield and the Surface Owner have agreed upon an Easement, Right-of-Way and Surface Use Agreement dated <u>February 16, 2013</u> covering the Drillsite Location and access to the Drillsite Location.

FURTHER AFFIANT SAYETH NOT.

Peter Burns

ACKNOWLEDGEMENT

STATE OF COLORADO

§

COUNTY OF DENVER

§

Before me, a Notary Public, in and for the State, on this <u>2nd</u> day of <u>July</u>, <u>2013</u>, personally appeared <u>Peter Burns</u>, to me known to be the identical person who executed the foregoing instrument, and acknowledged to me that <u>he</u> executed the same as <u>his</u> own free and voluntary act and deed for the uses and purposes therein set forth.

CHRISTIAN CABRIN SIZEMORE
NOTARY PUBLIC
STATE OF COLORADO
NOTARY ID 20134036083
MY COMMISSION EXPIRES JUNE 10, 2017

NOTARY PUBLIC

AFFIDAVIT OF EASEMENT AND RIGHT-OF-WAY

<u>Peter Burns</u> personally appeared before me, being duly sworn, deposes and with respect to State of Utah R649-3-34.7 says:

- 1. My name is <u>Peter Burns</u>. I am a Landman for Newfield Production Company, whose address is 1001 17th Street, Suite 2000, Denver, CO 80202 ("Newfield").
- 2. Newfield is the Operator of the proposed <u>Dart 15-10-3-2WH</u>, <u>Ranch 16-10-3-2WH</u>, <u>D-15-22-3-2WH</u> and <u>3-15-22-3-2WH</u> wells with surface locations to be positioned in the <u>S/2S/2</u> of Section <u>10</u>, Township <u>3</u> South, Range <u>2</u> West, <u>Duchesne County, Utah</u> (the "Drillsite Location"). The surface owner of a portion of the access road is <u>Mack Rideout</u>, <u>Personal Representative of the Estate of Sherman D. Rideout</u>, whose address is <u>3634 Capstone Ave.</u>, <u>Salt Lake City</u>, <u>UT 84121</u> ("Surface Owner").
- 3. Newfield and the Surface Owner have agreed upon an Easement and Right-of-Way dated <u>December 10, 2012</u> covering the <u>SWNW</u> of Section <u>14</u>, Township <u>3</u> South, Range <u>2</u> West, Duchesne County, Utah.

FURTHER AFFIANT SAYETH NOT.

Peter Burns

ACKNOWLEDGEMENT

STATE OF COLORADO

8

COUNTY OF DENVER

8

Before me, a Notary Public, in and for the State, on this <u>3rd</u> day of <u>July</u>, <u>2013</u>, personally appeared <u>Peter Burns</u>, to me known to be the identical person who executed the foregoing instrument, and acknowledged to me that <u>he</u> executed the same as <u>his</u> own free and voluntary act and deed for the uses and purposes therein set forth.

NOTARY PUBLIC

AFFIDAVIT OF EASEMENT AND RIGHT-OF-WAY

<u>Peter Burns</u> personally appeared before me, being duly sworn, deposes and with respect to State of Utah R649-3-34.7 says:

- 1. My name is <u>Peter Burns</u>. I am a Landman for Newfield Production Company, whose address is 1001 17th Street, Suite 2000, Denver, CO 80202 ("Newfield").
- 2. Newfield is the Operator of the proposed <u>Dart 15-10-3-2WH</u>, <u>Ranch 16-10-3-2WH</u>, <u>D-15-22-3-2WH</u> and <u>3-15-22-3-2WH</u> wells with surface locations to be positioned in the <u>S/2S/2</u> of Section <u>10</u>, Township <u>3</u> South, Range <u>2</u> West, <u>Duchesne County, Utah</u> (the "Drillsite Location"). The surface owner of a portion of the access road and pipeline route is <u>William Mellema</u>, <u>Jr. Trustee</u>, whose address is <u>P.O. Box 1198</u>, <u>Parker</u>, <u>CO 80134-1198</u> ("Surface Owner").
- 3. Newfield and the Surface Owner have agreed upon an Easement and Right-of-Way dated September 20, 2012 covering the N/2 and SE/4SW/4 of Section 15, Township 3 South, Range 2 West, Duchesne County, Utah.

FURTHER AFFIANT SAYETH NOT.

Peter Burns

ACKNOWLEDGEMENT

STATE OF COLORADO

§ §

COUNTY OF DENVER

Before me, a Notary Public, in and for the State, on this <u>3rd</u> day of <u>July 2013</u>, personally appeared <u>Peter Burns</u>, to me known to be the identical person who executed the foregoing instrument, and acknowledged to me that <u>he</u> executed the same as <u>his</u> own free and voluntary act and deed for the uses and purposes therein set forth.

NOTARY PUBLIC

AFFIDAVIT OF EASEMENT AND RIGHT-OF-WAY

<u>Peter Burns</u> personally appeared before me, being duly sworn, deposes and with respect to State of Utah R649-3-34.7 says:

- 1. My name is <u>Peter Burns</u>. I am a Landman for Newfield Production Company, whose address is 1001 17th Street, Suite 2000, Denver, CO 80202 ("Newfield").
- 2. Newfield is the Operator of the proposed <u>Dart 15-10-3-2WH</u>, Ranch 16-10-3-2WH, D-15-22-3-2WH and 3-15-22-3-2WH wells with surface locations to be positioned in the <u>S/2S/2</u> of Section <u>10</u>, Township <u>3</u> South, Range <u>2</u> West, <u>Duchesne County, Utah</u> (the "Drillsite Location"). The surface owner of a portion of the access road is <u>Bruce Dart, Trustee</u>, whose address is <u>Route 2</u>, <u>Box 2044</u>, <u>Roosevelt, UT 84066</u> ("Surface Owner").
- 3. Newfield and the Surface Owner have agreed upon an Easement and Right-of-Way dated February 16, 2013 covering the E/2NW and N/2NE of Section 14, Township 3 South, Range 2 West, Duchesne County, Utah.

FURTHER AFFIANT SAYETH NOT

Peter Burns

ACKNOWLEDGEMENT

STATE OF COLORADO

8

COUNTY OF DENVER

8

Before me, a Notary Public, in and for the State, on this <u>3rd</u> day of <u>July 2013</u>, personally appeared <u>Peter Burns</u>, to me known to be the identical person who executed the foregoing instrument, and acknowledged to me that <u>he</u> executed the same as <u>his</u> own free and voluntary act and deed for the uses and purposes therein set forth.

NOTARY PUBLIC

July 9, 2013

State of Utah Division of Oil, Gas & Mining ATTN: Brad Hill PO Box 145801 Salt Lake City, UT 84114

RE:

15-10-3-2WH

Township 3 South, Range 2 West, Section 10

Duchesne County, Utah

Dear Mr. Hill,

Newfield Exploration Company

1001 17th Street | Suite 2000 Denver, Colorado 80202 PH 303-893-0102 | FAX 303-893-0103

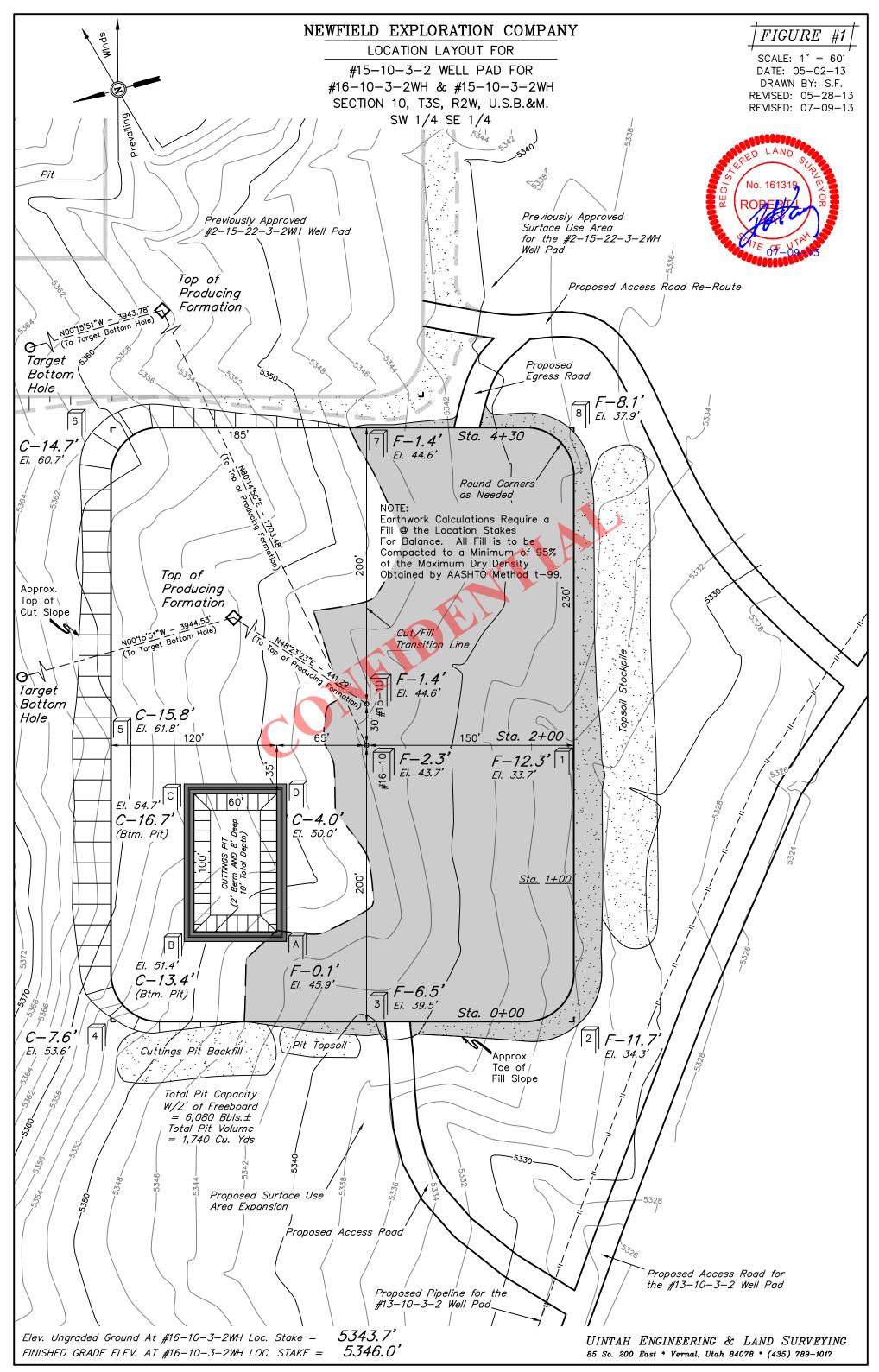
Newfield Production Company ("Newfield") proposes to drill the 15-10-3-2WH from a surface location of 368' FSL and 2311' FEL of Section 10, T3S R2W, to a bottom hole location of 660' FNL and 1980' FEL of Section 10, T3S R2W.

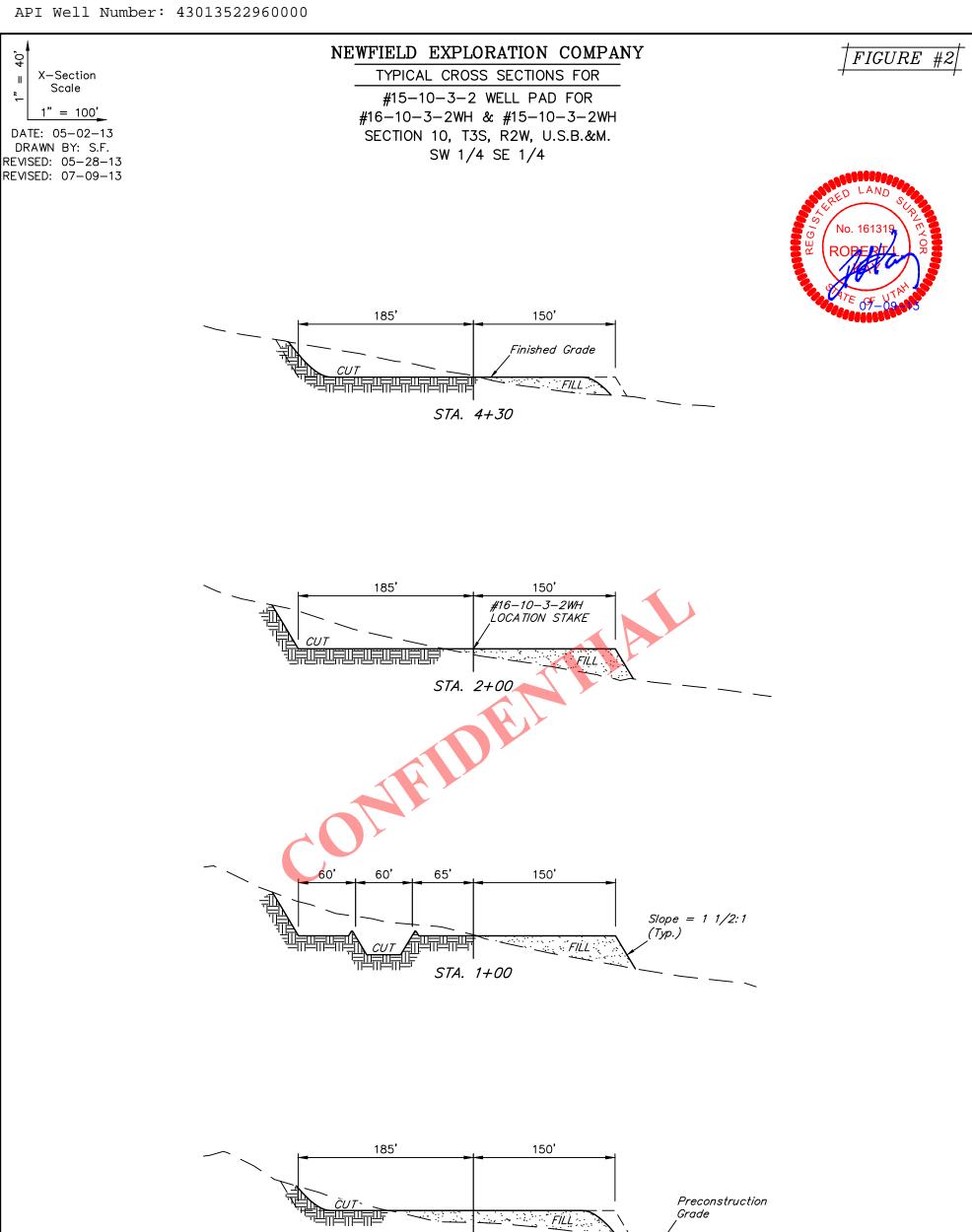
The 15-10-3-2WH is covered by Order No. 139-90, which requires no portion of the producing interval of the horizontal lateral be closer than 660' from the northern or southern section boundaries and no closer than 660' from the eastern or western section boundaries.

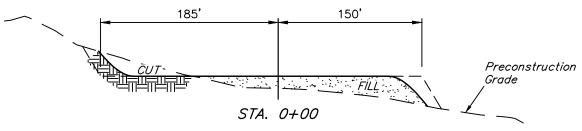
In compliance with the above referenced Order, the top of the uppermost producing zone of the 15-10-3-2WH is 660' FSL and 1980' FEL of 3S 2W Section 10. Newfield shall case and cement the 15-10-3-2WH wellbore from the surface location to the point where the wellbore reaches the legal setback, and the wellbore will only be completed within the legal setback. In the event a future recompletion outside of this setback is proposed, Newfield shall attempt to acquire consent from all the owners in Section 15 of T3S R2W, and shall file the appropriate application with the State. The bottom hole location of the 15-10-3-2WH is 660' FNL and 1980' FEL of 3S 2W Section 10, which is within the legal setback.

Newfield has also obtained authorization from the surface owner of the drilling location, as is evidenced by the Affidavit of Easement, Right-of-Way and Surface Use Agreement attached to the APD. Newfield and its partners are the leasehold owners of the minerals underlying the surface location and all that portion of the wellbore of the 15-10-3-2WH lying outside the drilling unit.

Based on Newfield's compliance with the requirements of Order No. 139-90, Newfield respectfully requests the approval of our APD for the 15-10-3-2WH.


If you have any questions or require further information, please do not hesitate to contact the undersigned at 303-382-4466 or by email at rnmiller@newfield.com. Your consideration of this matter is greatly appreciated.


Sincerely,


Robert N. Miller II

1. Mllet

Landman

APPROXIMATE ACREAGE

ORIGINAL PROPOSED WELL

SITE DISTURBANCE = \pm 5.702 ACRES

NEW (ADDITIONAL TO ORIGINAL) PROPOSED

EXPANSION WELL SITE DISTURBANCE = \pm 5.058 ACRES ACCESS ROAD DISTURBANCE = \pm 0.427 ACRES

PIPELINE DISTURBANCE = ± 0.204 ACRES

 $TOTAL = \pm 11.391 ACRES$

APPROXIMATE YARDAGES

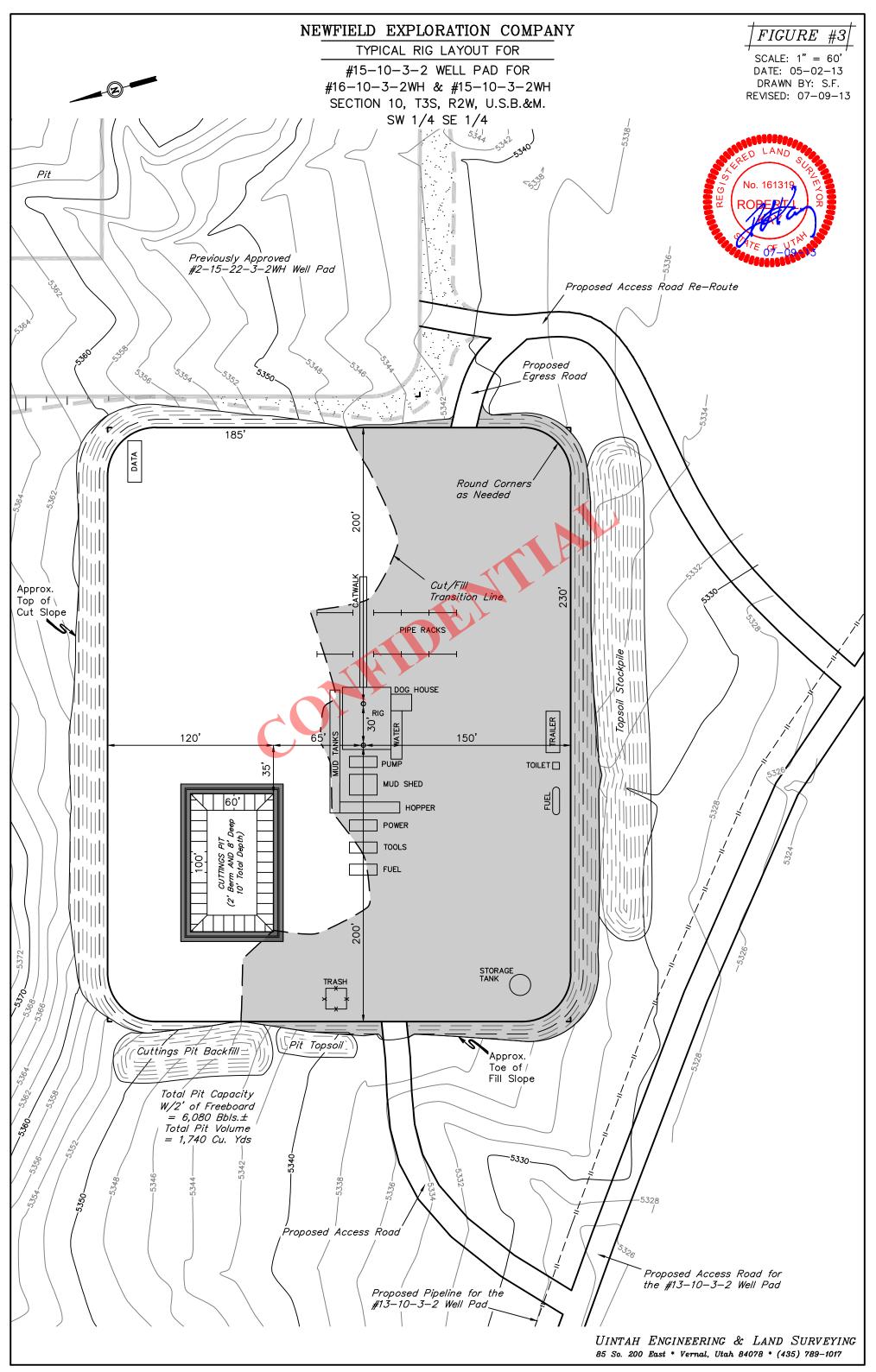
= *3,100* Cu. Yds. (6") Topsoil Stripping Remaining Location = 19,880 Cu. Yds.

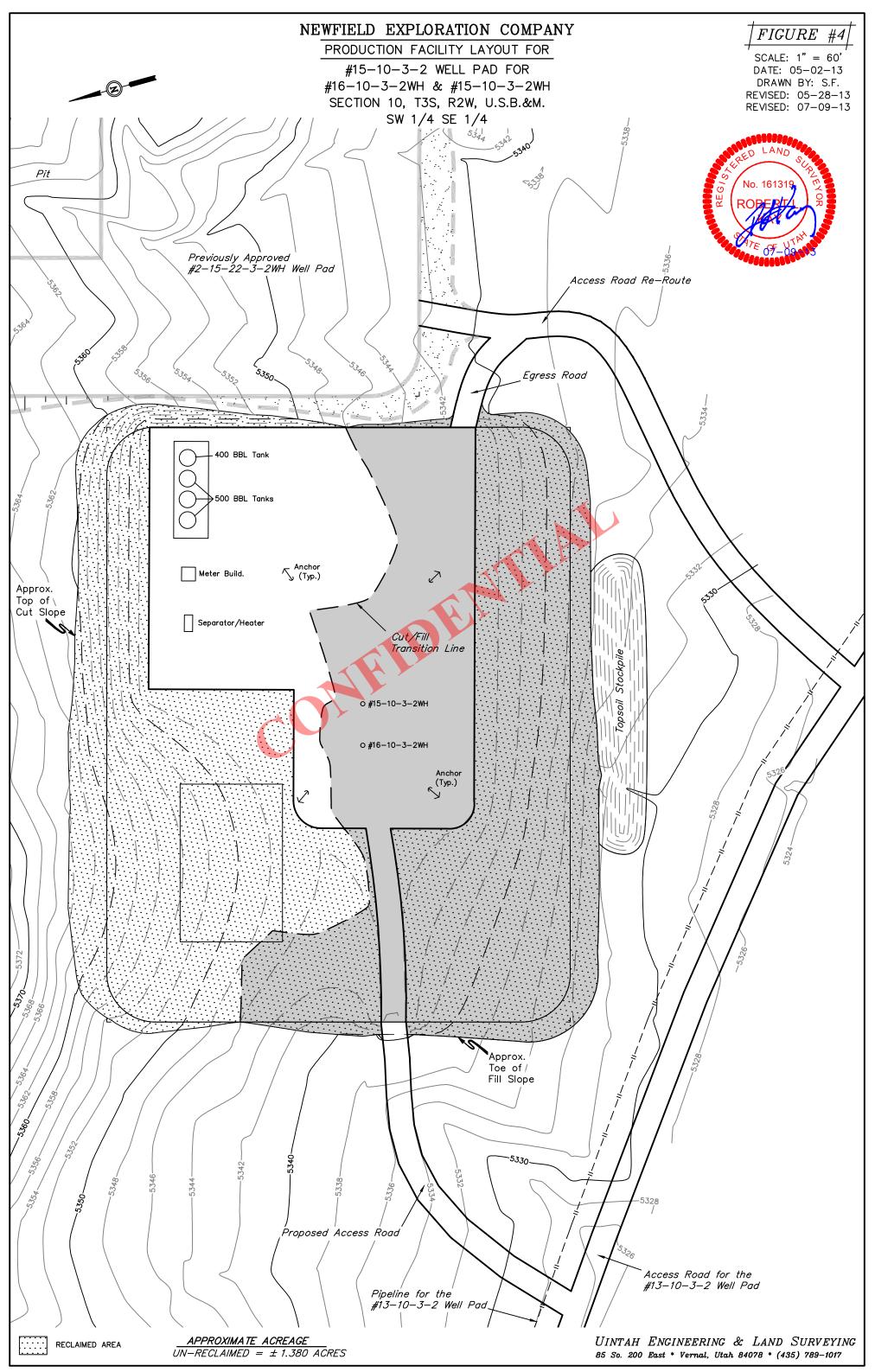
TOTAL CUT 22,980 CU. YDS. **FILL** 19,010 CU. YDS.

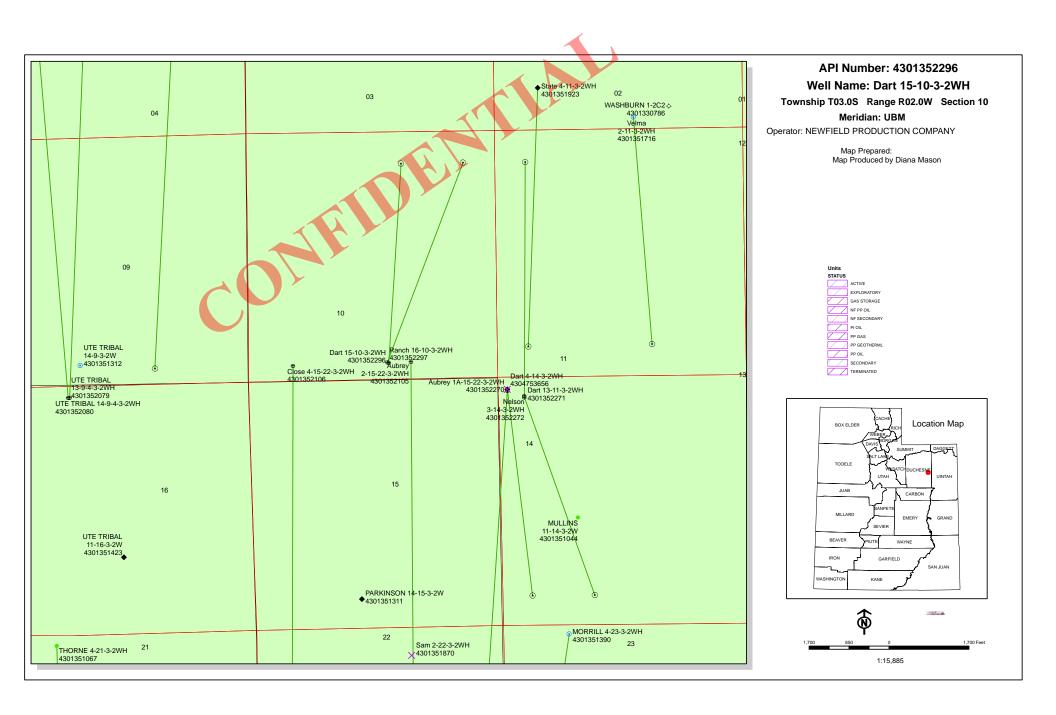
* NOTE:

FILL QUANTITY INCLUDES

5% FOR COMPACTION


EXCESS MATERIAL Topsoil & Pit Backfill

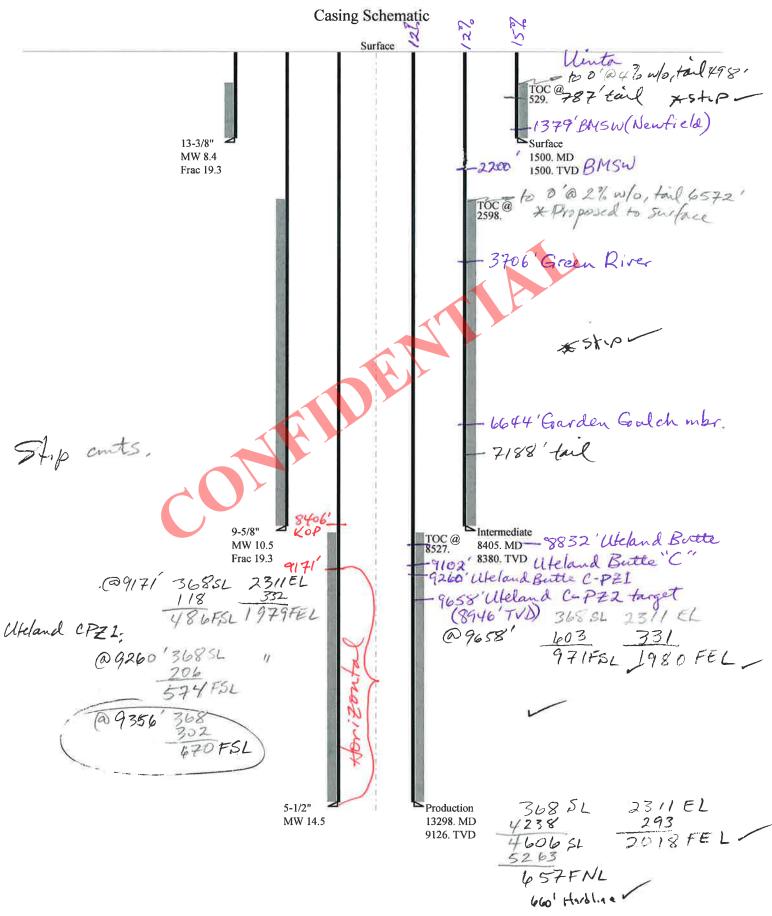

= 3,970 Cu. Yds. = 3,970 Cu. Yds.


(1/2 Pit Vol.)

EXCESS UNBALANCE O Cu. Yds. (After Interim Rehabilitation)

UINTAH ENGINEERING & LAND SURVEYING 85 So. 200 East * Vernal, Utah 84078 * (435) 789-1017

*Max Pressure Allowed @ Previous Casing Shoe=


BOPE REVIEW NEWFIELD PRODUCTION COMPANY Dart 15-10-3-2WH 43013522960000

Well Name		NEWFIELD PRODUCTION COMPANY Dart 15-10-3-2W				/H 43013522	96	
String		COND		11	PROD		īl	
Casing Size(")		20.000	13.375	9.625	i	5.500	7	
Setting Depth (TVD)		60	1500	8400	i	9126	7	
Previous Shoe Setting Depth (TVD)		0	60	1500	i	8400	1	
Max Mud Weight (ppg)		8.3	8.4	10.5	i	14.5		
BOPE Proposed (psi)		0	500	5000	i	5000		
Casing Internal Yield (psi)		1000	2730	5750	i	12360	1	
Operators Max Anticipated Pressure (psi)		6643			i	14.0		
Calculations	COND String				Г	20.000	"	
Max BHP (psi)	05245				26			
*	<i>v</i> 1					BOPE Ade	quate For Drilling And Setting Casing at Depth?	
MASP (Gas) (psi)	Max BHP-(0.12*Setting Depth)=				19	9	NO I	
MASP (Gas/Mud) (psi)	Max BHP-(0.22*Setting Depth)=				13	3	NO I	
							*Can Full	Expected Pressure Be Held At Previous Shoe?
Pressure At Previous Shoe	etting Depth - Previous Shoe Depth)=				3	NO		
Required Casing/BOPE Test Pressure=				60		psi		
*Max Pressure Allowed @ Previous Casing Shoe=					0		psi *Ass	sumes 1psi/ft frac gradient
Calculations	SURF String				65	13,375	"	
Max BHP (psi)			.052*Setting Depth*MW=					
MASD (C) (i)	Mar DUD (1280 kin Dayl)				1			quate For Drilling And Setting Casing at Depth?
MASP (Gas) (psi)	Max BHP (0.12*Setting Depth)=				H		YES	diverter
MASP (Gas/Mud) (psi)		Max BHP-(0.22*Setting Depth)=				25	YES F-II	OK
Pressure At Previous Shoe Max BHP22*(Setting Depth - Previous Shoe Depth)=				H			Expected Pressure Be Held At Previous Shoe?	
Required Casing/BOPE Test Pressure=					33		psi	ОК
*Max Pressure Allowed @ Previous Casing Shoe=					H	500	psi *Assumes 1psi/ft frac gradient	
Man 11500010 Informed & 11011010 Cubing Diffe-					60)	P51 7135	ames 1psi/it frue gradient
Calculations	I1 String					9.625	"	
Max BHP (psi)		.052*Setting Depth*MW=			45	86		
							BOPE Ade	quate For Drilling And Setting Casing at Depth?
MASP (Gas) (psi)	Max BHP-(0.12*Setting Depth)=				35	578	YES	5M BOPE, ram type, 5M annular
MASP (Gas/Mud) (psi)		Max BH	P-(0.22*Setti	ng Depth)=	27	738	YES	ОК
					L		*Can Full	Expected Pressure Be Held At Previous Shoe?
Pressure At Previous Shoe Max BHP22*(Setting Depth - Previous Shoe Depth)=					30	068	NO	ОК
Required Casing/BOPE Test Pressure=					40)25	psi	
*Max Pressure Allowed @ Previous Casing Shoe=					15	500	psi *Ass	sumes 1psi/ft frac gradient
Calculations		PROD Sta	ing		П	5.500	"	
Max BHP (psi)	.052*Setting Depth*MW=				68	881		
							BOPE Ade	quate For Drilling And Setting Casing at Depth?
MASP (Gas) (psi)	Max BHP-(0.12*Setting Depth)=				57	786	NO	5M BOPE, 2 ram preventers, annular
MASP (Gas/Mud) (psi)		Max BH	P-(0.22*Setti	ng Depth)=	48	373	YES	ОК
							*Can Full	Expected Pressure Be Held At Previous Shoe?
Pressure At Previous Shoe Max BHP22*(Setting Depth - Previous Shoe Depth)=					67	721	YES	
Required Casing/BOPE Test Pressure=					50	000	psi	

psi *Assumes 1psi/ft frac gradient

5750

43013522960000 Dart 15-10-3-2WHrev

Well name:

43013522960000 Dart 15-10-3-2WHrev

Operator:

NEWFIELD PRODUCTION COMPANY

String type:

Surface

Project ID: 43-013-52296

Location:

DUCHESNE COUNTY

Design parameters:	Minimum design factors:	Environment:
--------------------	-------------------------	---------------------

Collapse

8.400 ppg Mud weight: Design is based on evacuated pipe.

Collapse:

Design factor 1.125

H2S considered? Surface temperature: No 74 °F

Bottom hole temperature: Temperature gradient:

95 °F 1.40 °F/100ft

Minimum section length:

100 ft

Burst:

Design factor

1.00

Cement top:

529 ft

Burst

Max anticipated surface

No backup mud specified.

pressure: Internal gradient: Calculated BHP

1,320 psi 0.120 psi/ft

1,500 psi

Tension:

8 Round STC:

Buttress: Premium: Body yield:

Neutral point:

1.80 (J) 1.70 (J) 8 Round LTC:

1.60 (J) 1.50 (J) 1.50 (B)

1,314 ft

Tension is based on buoyed weight.

Re subsequent strings:

Non-directional string.

Next setting depth: 8,400 ft Next mud weight: 10.500 ppg Next setting BHP: 4,582 psi

Fracture mud wt: Fracture depth: Injection pressure: 19.250 ppg 1,500 ft 1,500 psi

Run	Segment		Nominal		End	True Vert	Measured	Drift	Est.
Seq	Length	Size	Weight	Grade	Finish	Depth	Depth	Diameter	Cost
	(ft)	(in)	(lbs/ft)			(ft)	(ft)	(in)	(\$)
1	1500	13.375	54.50	J-55	ST&C	1500	1500	12.49	18611
Run	Collapse	Collapse	Collapse	Burst	Burst	Burst	Tension	Tension	Tension
Seq	Load	Strength	Design	Load	Strength	Design	Load	Strength	Design
ooq			Factor		•	Factor			Factor
	(psi)	(psi)	ractor	(psi)	(psi)	ractor	(kips)	(kips)	Factor
1	655	1130	1.727	1500	2730	1.82	71.6	514	7.18 J

Prepared

Helen Sadik-Macdonald Div of Oil, Gas & Mining

Phone: 801 538-5357 FAX: 801-359-3940

Date: August 28,2013 Salt Lake City, Utah

Collapse is based on a vertical depth of 1500 ft, a mud weight of 8.4 ppg. The casing is considered to be evacuated for collapse purposes. Collapse strength is based on the Westcott, Dunlop & Kemler method of biaxial correction for tension.

Burst strength is not adjusted for tension.

43013522960000 Dart 15-10-3-2WHrev Well name:

NEWFIELD PRODUCTION COMPANY Operator:

Intermediate String type: Project ID: 43-013-52296

DUCHESNE COUNTY Location:

Minimum design factors: **Environment:** Design parameters: H2S considered?

Collapse Collapse:

Mud weight: 10.500 ppg Design factor 1.125 Surface temperature: 74 °F Internal fluid density: 4.930 ppg Bottom hole temperature: 191 °F

1.40 °F/100ft Temperature gradient:

No

9,126 ft

Minimum section length: 1,000 ft

Burst:

Design factor 1.00 Cement top: 2,598 ft

Burst

Max anticipated surface pressure: 4,866 psi

Internal gradient: 0.220 psi/ft Calculated BHP 6,710 psi

Annular backup: 2.33 ppg

Tension: 8 Round STC: 8 Round LTC:

1.60 (J) **Buttress:** Premium: 1.50 (J) Body yield: 1.60 (B)

Tension is based on air weight. Neutral point: 7,095 ft Directional well information:

Kick-off point 8406 ft Departure at shoe: 482 ft Maximum dogleg: 2 °/100ft 0 °

Inclination at shoe: Re subsequent strings:

Next setting depth: Next mud weight:

1.80 (J)

1.80 (J)

14.500 ppg Next setting BHP: 6,874 psi Fracture mud wt: 19.250 ppg Fracture depth: 8,380 ft Injection pressure: 8,380 psi

Run Segment **Nominal** End True Vert Measured Drift Est. Seq Length Size Weight Grade **Finish** Depth Depth Diameter Cost (ft) (in)(lbs/ft) (ft) (ft) (in) (\$) 40.00 N-80 8405 1 8405 9.625 **Buttress** 8380 114441 8.75 Collapse Collapse Collapse **Burst Burst Burst Tension Tension** Tension Load Design Load Design Load Strength Design

Run Strength Strength Seq **Factor Factor** (kips) **Factor** (psi) (psi) (psi) (psi) (kips) 1 2425 3090 1.274 5696 5750 1.01 335.2 916.3 2.73 B

Helen Sadik-Macdonald Prepared

Phone: 801 538-5357

Date: September 30,2013

Div of Oil, Gas & Mining FAX: 801-359-3940 Salt Lake City, Utah by:

Collapse is based on a vertical depth of 8380 ft, a mud weight of 10.5 ppg. An internal gradient of .256 psi/ft was used for collapse from TD Collapse strength is based on the Westcott, Dunlop & Kemler method of biaxial correction for tension.

Burst strength is not adjusted for tension.

Collapse strength is (biaxially) derated for doglegs in directional wells by multiplying the tensile stress by the cross section area to calculate a

Well name:

43013522960000 Dart 15-10-3-2WHrev

Operator:

NEWFIELD PRODUCTION COMPANY

String type:

Production

Project ID: 43-013-52296

Location:

DUCHESNE COUNTY

Environment:

Cement top:

Design parameters:

Collapse

Mud weight:

14.500 ppg Design is based on evacuated pipe.

Minimum design factors: Collapse:

Design factor

H2S considered? 1.125

1.00

1.80 (J)

1.60 (J)

1.50 (J)

1.60 (B)

Surface temperature:

No 74 °F 202 °F

Bottom hole temperature: Temperature gradient:

1.40 °F/100ft

Minimum section length: 1,000 ft

8,527 ft

Burst

Max anticipated surface

pressure: Internal gradient: Calculated BHP

No backup mud specified.

4,866 psi

0.220 psi/ft 6,874 psi

Tension:

Burst: Design factor

8 Round STC:

8 Round LTC: **Buttress:**

Premium: Body yield:

Directional well information: 1.80 (J)

Kick-off point Departure at shoe: Maximum dogleg:

8406 ft 4248 ft 11 °/100ft

Inclination at shoe:

87.17°

Tension is based on air weight. Neutral point: 7,147 ft

Segment		Nominal		End	True Vert	Measured	Drift	Est.
Length	Size	Weight	Grade	Finish	Depth	Depth	Diameter	Cost
(ft)	(in)	(lbs/ft)			(ft)	(ft)	(in)	(\$)
13298	5.5	20.00	P-110	Buttress	9126	13298	4.653	110323
Collapse	Collapse	Collapse	Burst	Burst	Burst	Tension	Tension	Tension
Load	Strength	Design	Load	Strength	Design	Load	Strength	Design
(psi)	(psi)	Factor	(psi)	(psi)	Factor	(kips)	(kips)	Factor
6874	11100	1.615	6874	12360	1.80	182.5	641.1	3.51 B
	Length (ft) 13298 Collapse Load (psi)	Length Size (ft) (in) 13298 5.5 Collapse Collapse Load Strength (psi) (psi)	Length (ft) (in) (lbs/ft) 13298 5.5 Collapse Collapse Load Strength (psi) (psi) Factor	Length (ft) (in) (lbs/ft) 13298 5.5 20.00 P-110 Collapse Collapse Collapse Burst Load Strength Design Load (psi) (psi) Factor (psi)	Length (ft) (in) (lbs/ft) 13298 5.5 20.00 P-110 Buttress Collapse Collapse Collapse Burst Burst Load Strength Design Load Strength (psi) (psi) Factor (psi) (psi)	Length (ft) (in) (lbs/ft) Grade Finish Depth (ft) (ft) (lbs/ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (Length (ft)Size (in)Weight (lbs/ft)Grade (red)Finish (ft)Depth (ft)Depth (ft)132985.520.00P-110Buttress912613298Collapse Load (psi)Collapse Strength (psi)Collapse Design (psi)Burst Strength (psi)Burst 	Length (ft)Size (in)Weight (lbs/ft)Grade (lbs/ft)Finish (ft)Depth (ft)Depth (ft)Diameter (ft)132985.520.00P-110Buttress9126132984.653Collapse LoadCollapse Strength (psi)Collapse Design (psi)Burst Strength (psi)Burst Strength (psi)Burst Strength (psi)Burst Design (psi)Tension Design (psi)Tension Strength (kips)

Prepared

Helen Sadik-Macdonald

by: Div of Oil, Gas & Mining Phone: 801 538-5357

FAX: 801-359-3940

Date: September 30,2013

Salt Lake City, Utah

Remarks:

Collapse is based on a vertical depth of 9126 ft, a mud weight of 14.5 ppg. The casing is considered to be evacuated for collapse purposes. Collapse strength is based on the Westcott, Dunlop & Kemler method of biaxial correction for tension.

Burst strength is not adjusted for tension.

Collapse strength is (biaxially) derated for doglegs in directional wells by multiplying the tensile stress by the cross section area to calculate a

ON-SITE PREDRILL EVALUATION

Utah Division of Oil, Gas and Mining

Operator NEWFIELD PRODUCTION COMPANY

Well Name Dart 15-10-3-2WH

API Number 43013522960000 APD No 8273 Field/Unit NORTH MYTON

BENCH

Location: 1/4,1/4 SWSE Sec 10 Tw 3.0S Rng 2.0W 368 FSL 2311 FEL

GPS Coord (UTM) 577020 4453733 Surface Owner Dart Homestead Ranch, Inc.

Participants

Bruce Dart - Landowner; Jim Burns - Starpoint; Forrest Bird, Mandie Crozier, Matt Barber - NFX; Kyle Gardiner - Uintah Engineering

Regional/Local Setting & Topography

on pad previously permitted. Pad will be extended to larger size of 2 pads with 2 pits, tank farms etc.

Previous pad Aubrey 2-15-22-3-2WH original language follows

The location is proposed on fallow grazing lands on the edge of the North Myton Bench. Drainages from the bench impact the site in two places. The area is rather barren of vegetation and the soils are clays. There are numerous eroded knolls and slight swales with an historic floodpalin below. The location is one mile West of Highway 40 and 2 1/2 miles North of Myton just off Dart lane. The region is comprised of benches of differing levels and floodplains form the Duchesne River that has moved from its historic route. The soils are highly erodible and vegetation is sparse with the exception of the floodplains that are quite productive farmlands. Occassional buttes and numerous deep cut erosional features describe the region that is experiencing rapid growth in petroleum development.

Surface Use Plan

Current Surface Use

Grazing

Wildlfe Habitat

New Road
Miles

Well Pad

Src Const Material

Surface Formation

0.5 Width 235 Length 400 Offsite UNTA

Ancillary Facilities

Waste Management Plan Adequate?

Environmental Parameters

Affected Floodplains and/or Wetlands N

Flora / Fauna

RECEIVED: October 22, 2013

High desert shrubland ecosystem. Expected vegetation consists of black sagebrush, shadscale, Atriplex spp., mustard spp, rabbit brush, horsebrush, broom snakeweed, Opuntia spp and spring annuals.

Dominant vegetation;

Galletta, mat atriplex and broom snake weed

Wildlife;

Adjacent habitat contains forbs that may be suitable browse for deer, antelope, prairie dogs or rabbits. Wild turkeys have moved in and were encountered multiple times. DWR did not respond with comments / issues

Soil Type and Characteristics

fat, light colored clays soils

Erosion Issues Y

Sedimentation Issues Y

Site Stability Issues N

Drainage Diverson Required? Y

plans show diversion placement

Berm Required? Y

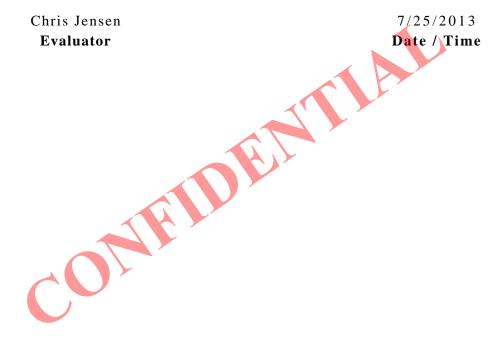
Erosion Sedimentation Control Required?

Paleo Survey Run? N Paleo Potental Observed? N Cultural Survey Run? N Cultural Resources? N

Reserve Pit

Site-Specific Factors	Site Ran	king	
Distance to Groundwater (feet)	75 to 100	10	
Distance to Surface Water (feet)		20	
Dist. Nearest Municipal Well (ft)	500 to 1320	10	
Distance to Other Wells (feet)		20	
Native Soil Type	Mod permeability	10	
Fluid Type	Oil Base Mud Fluid	15	
Drill Cuttings	Normal Rock	0	
Annual Precipitation (inches)	10 to 20	5	
Affected Populations			
Presence Nearby Utility Conduits	Present	15	
	Final Score	105	1 Sensitivity Level

Characteristics / Requirements


RECEIVED: October 22, 2013

Operator intends to use an oil based drilling mud and is therefore required to use a closed loop system. If a reserve pit and freshwater is used, Pit to be dug to a depth of 8'. Because of the likely hood of disturbance to existing sandstone bedrock, pit underlayment is to be used to protect the liner from potential puncture. Pit should be fenced to prevent entry by deer, other wildlife and domestic animals. Pit to be closed within one year after drilling activities are complete.

Closed Loop Mud Required? Y Liner Required? Y Liner Thickness 16 Pit Underlayment Required? Y

Other Observations / Comments

This is a pad that is intended as an extension of a pad that was previously permitted yet not built. They intend to extend this pad by approximately one more pad built immediately adjacent and connecting. It will have two very large cuttings pits etc.

Application for Permit to Drill Statement of Basis

Utah Division of Oil, Gas and Mining

APD No	API WellNo	Status	Well Type	Surf Owner	CBM
8273	43013522960000	LOCKED	OW	P	No
Operator	NEWFIELD PRODUCTION (COMPANY	Surface Owner-APD	Dart Homeste Ranch, Inc.	ead
Well Name	Dart 15-10-3-2WH		Unit		
Field	NORTH MYTON BENCH		Type of Work	DRILL	
Location	SWSE 10 3S 2W U (UTM) 577030E 44537	368 FSL 30N	2311 FEL GPS Coor	ſ	

Geologic Statement of Basis

Newfield proposes to set 60' of conductor and 1,500' of surface casing at this location. The base of the moderately saline water at this location is estimated to be at a depth of 2,200'. A search of Division of Water Rights records shows 23 water wells within a 10,000 foot radius of the center of Section 10. Depth is listed as ranging from 32 to 800 feet. Depths are not listed for 4 wells. Water use is listed as irrigation, stock watering, municipal and domestic use. The surface formation at this site is the Uinta Formation. The Uinta Formation is made up of interbedded shales and sandstones. The sandstones are mostly lenticular and discontinuous and should not be a significant source of useable ground water. Intermediate casing cement should be brought up to or above the estimated base of the moderately saline ground water.

Brad Hill 8/7/2013
APD Evaluator Date / Time

Surface Statement of Basis

Location is proposed in a good location although outside the spacing window typical of a horizontal well. Access road enters the pad from the east. The landowner was in attendance for the pre-site inspection.

The soil type and topography at present do combine to pose a small threat to erosion or sediment/ pollution transport in these regional climate conditions.

Usual construction standards of the Operator appear to be adequate for the proposed purpose as submitted. Operator has plans to use a closed loop system an oil based mud not indicated on plans.

I recognize no special flora or animal species or cultural resources on site that the proposed action may harm. The location was previously surveyed for cultural and paleontological resources as the operator saw fit. I have advised the operator take all measures necessary to comply with ESA and MBTA and that actions insure no disturbance to species that may have not been seen during onsite visit.

The location should be bermed to prevent fluids from entering or leaving the confines of the pad. Fencing around the reserve pit will be necessary to prevent wildlife and livestock from entering. A synthetic liner of 16 mils (minimum) should be utilized in the reserve pit. Measures (BMP's) shall be taken to protect steep slopes and topsoil pile from erosion, sedimentation and stability issues. A diversion is to be built sufficient to conduct overland or channel flow according to plans submitted

RECEIVED: October 22, 2013

Chris Jensen
Onsite Evaluator

7/25/2013 **Date / Time**

Conditions of Approval / Application for Permit to Drill

Category Condition

Pits A closed loop mud circulation system is required for this location.

Pits A synthetic liner with a minimum thickness of 16 mils with a felt subliner shall be properly installed

and maintained in the cuttings pit.

Surface Drainages adjacent to the proposed pad shall be diverted around the location.

Surface The well site shall be bermed to prevent fluids from leaving the pad.

Surface The reserve pit shall be fenced upon completion of drilling operations.

Surface Measures (BMP's) shall be taken to protect steep slopes and topsoil pile from erosion, sedimentation

and stability issues.

RECEIVED: October 22, 2013

WORKSHEET APPLICATION FOR PERMIT TO DRILL

APD RECEIVED: 7/12/2013 API NO. ASSIGNED: 43013522960000

WELL NAME: Dart 15-10-3-2WH

OPERATOR: NEWFIELD PRODUCTION COMPANY (N2695) PHONE NUMBER: 435 719-2018

CONTACT: Don Hamilton

PROPOSED LOCATION: SWSE 10 030S 020W Permit Tech Review:

> **SURFACE: 0368 FSL 2311 FEL** Engineering Review:

> BOTTOM: 0660 FNL 1980 FEL Geology Review:

> **COUNTY: DUCHESNE**

LATITUDE: 40.23046 **LONGITUDE:** -110.09454 UTM SURF EASTINGS: 577030.00 NORTHINGS: 4453730.00

FIELD NAME: NORTH MYTON BENCH

LOCATION AND SITING:

LEASE TYPE: 4 - Fee **LEASE NUMBER: Patented** PROPOSED PRODUCING FORMATION(S): UTELAND BUTTE

SURFACE OWNER: 4 - Fee **COALBED METHANE: NO**

Unit:

RECEIVED AND/OR REVIEWED:

Bond: STATE - B001834

Oil Shale 190-5

✓ PLAT R649-2-3.

R649-3-2. General **Potash**

Oil Shale 190-3 R649-3-3. Exception

Oil Shale 190-13 **Drilling Unit**

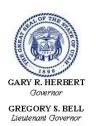
Board Cause No: Cause 139-90 Water Permit: 437478

Effective Date: 5/9/2012 **RDCC Review:**

Siting: 4 Prod LGRRV-WSTC Wells **Fee Surface Agreement**

Intent to Commingle R649-3-11. Directional Drill

Commingling Approved


Comments: Presite Completed

Stipulations: 1 - Exception Location - bhill

5 - Statement of Basis - bhill

8 - Cement to Surface -- 2 strings - hmacdonald 13 - Cement Volume Formation (3a) - hmacdonald

27 - Other - dmason 28 - Other2 - ddoucet

State of Utah

DEPARTMENT OF NATURAL RESOURCES

MICHAEL R. STYLER
Executive Director

Division of Oil, Gas and Mining

JOHN R. BAZA
Division Director

Permit To Drill

Well Name: Dart 15-10-3-2WH **API Well Number:** 43013522960000

Lease Number: Patented

Surface Owner: FEE (PRIVATE) Approval Date: 10/22/2013

Issued to:

NEWFIELD PRODUCTION COMPANY, Rt 3 Box 3630, Myton, UT 84052

Authority:

Pursuant to Utah Code Ann. 40-6-1 et seq., and Utah Administrative Code R649-3-1 et seq., the Utah Division of Oil, Gas and Mining issues conditions of approval, and permit to drill the listed well. This permit is issued in accordance with the requirements of Cause 139-90. The expected producing formation or pool is the UTELAND BUTTE Formation(s), completion into any other zones will require filing a Sundry Notice (Form 9). Completion and commingling of more than one pool will require approval in accordance with R649-3-22.

Duration:

This approval shall expire one year from the above date unless substantial and continuous operation is underway, or a request for extension is made prior to the expiration date

Exception Location:

Appropriate information has been submitted to DOGM and administrative approval of the requested exception location is hereby granted.

General:

Compliance with the requirements of Utah Admin. R. 649-1 et seq., the Oil and Gas Conservation General Rules, and the applicable terms and provisions of the approved Application for permit to drill.

Conditions of Approval:

Compliance with the Conditions of Approval/Application for Permit to Drill outlined in the Statement of Basis (copy attached).

In accordance with Utah Admin. R.649-3-21, the operator shall submit a complete angular deviation and directional survey report to the Division within 30 days following completion of the well.

Cement volume for the 5 1/2" production string shall be determined from actual hole diameter in order to place cement from the pipe setting depth back to 7406' MD in order to adequately isolate the Green River formation and honor legal setback.

Cement volumes for the 13 3/8" and 9 5/8" casing strings shall be determined from actual hole diameters in order to place cement from the pipe setting depths back to the surface.

Horizontal lateral shall not be completed outside legal setbacks (approximately 9356' measured depth based on submitted directional drilling plan).

Additional Approvals:

The operator is required to obtain approval from the Division of Oil, Gas and mining before performing any of the following actions during the drilling of this well:

- Any changes to the approved drilling plan contact Dustin Doucet
- Significant plug back of the well contact Dustin Doucet
- Plug and abandonment of the well contact Dustin Doucet

Notification Requirements:

The operator is required to notify the Division of Oil, Gas and Mining of the following actions during drilling of this well:

• Within 24 hours following the spudding of the well - contact Carol Daniels OR

submit an electronic sundry notice (pre-registration required) via the Utah Oil & Gas website

at http://oilgas.ogm.utah.gov

- 24 hours prior to testing blowout prevention equipment contact Dan Jarvis
- 24 hours prior to cementing or testing casing contact Dan Jarvis
- Within 24 hours of making any emergency changes to the approved drilling program
 - contact Dustin Doucet
- 24 hours prior to commencing operations to plug and abandon the well contact Dan Jarvis

Contact Information:

The following are Division of Oil, Gas and Mining contacts and their telephone numbers (please leave a voicemail message if the person is not available to take the call):

Carol Daniels 801-538-5284 - office
Dustin Doucet 801-538-5281 - office 801-733-0983 - after office hours
Dan Jarvis 801-538-5338 - office 801-231-8956 - after office hours

Reporting Requirements:

All reports, forms and submittals as required by the Utah Oil and Gas Conservation General Rules will be promptly filed with the Division of Oil, Gas and Mining, including but not limited to:

- Entity Action Form (Form 6) due within 5 days of spudding the well
- Monthly Status Report (Form 9) due by 5th day of the following calendar month
 - Requests to Change Plans (Form 9) due prior to implementation
 - Written Notice of Emergency Changes (Form 9) due within 5 days
 - Notice of Operations Suspension or Resumption (Form 9) due prior to

implementation

- Report of Water Encountered (Form 7) due within 30 days after completion
 Well Completion Report (Form 8) due within 30 days after completion or plugging

Approved By:

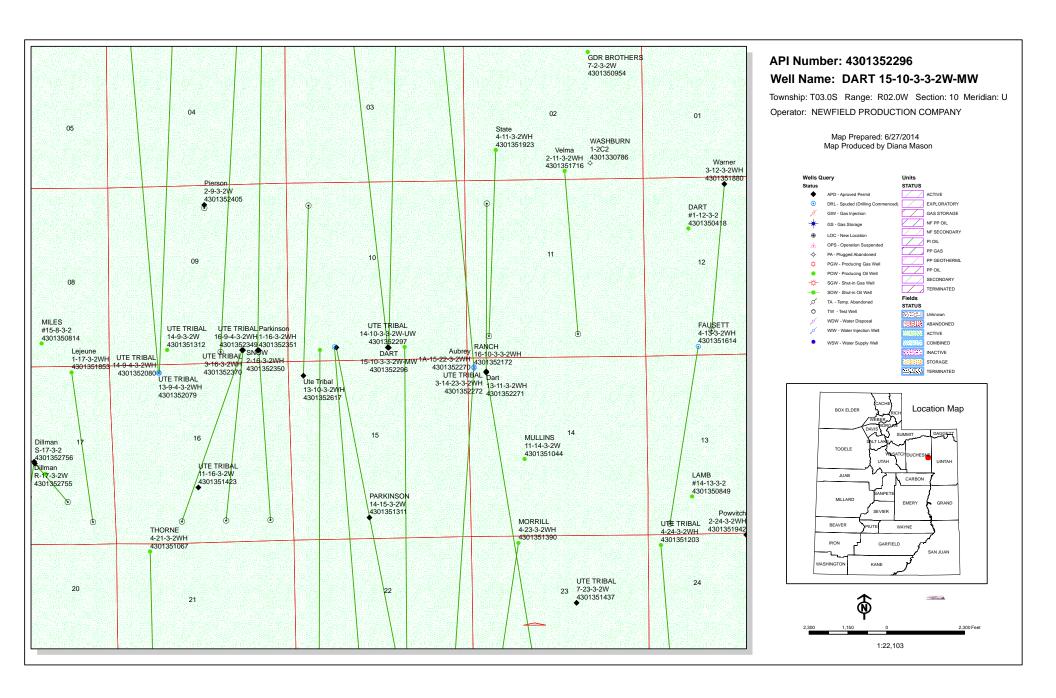
For John Rogers Associate Director, Oil & Gas

	STATE OF UTAH		FORM 9
ı	DEPARTMENT OF NATURAL RESOURCES DIVISION OF OIL, GAS, AND MINING	G	5.LEASE DESIGNATION AND SERIAL NUMBER: Patented
SUNDR	RY NOTICES AND REPORTS ON	WELLS	6. IF INDIAN, ALLOTTEE OR TRIBE NAME:
	posals to drill new wells, significantly dee reenter plugged wells, or to drill horizontal n for such proposals.		7.UNIT or CA AGREEMENT NAME:
1. TYPE OF WELL Oil Well			8. WELL NAME and NUMBER: RANCH 15-10-3-3-2W-MW
2. NAME OF OPERATOR: NEWFIELD PRODUCTION CO	DMPANY		9. API NUMBER: 43013522960000
3. ADDRESS OF OPERATOR: 1001 17th Street, Suite 200		ONE NUMBER: 03 382-4443 Ext	9. FIELD and POOL or WILDCAT: NORTH MYTON BENCH
4. LOCATION OF WELL FOOTAGES AT SURFACE: 0368 FSL 2311 FEL			COUNTY: DUCHESNE
QTR/QTR, SECTION, TOWNSH	HIP, RANGE, MERIDIAN: 10 Township: 03.0S Range: 02.0W Meridian	: U	STATE: UTAH
11. CHECI	K APPROPRIATE BOXES TO INDICATE N	IATURE OF NOTICE, REPOR	RT, OR OTHER DATA
TYPE OF SUBMISSION		TYPE OF ACTION	
	ACIDIZE	ALTER CASING	CASING REPAIR
NOTICE OF INTENT Approximate date work will start: 8/1/2014	✓ CHANGE TO PREVIOUS PLANS	CHANGE TUBING	CHANGE WELL NAME
	CHANGE WELL STATUS	COMMINGLE PRODUCING FORMATIONS	CONVERT WELL TYPE
SUBSEQUENT REPORT	DEEPEN	FRACTURE TREAT	NEW CONSTRUCTION
Date of Work Completion:	OPERATOR CHANGE	PLUG AND ABANDON	PLUG BACK
		RECLAMATION OF WELL SITE	RECOMPLETE DIFFERENT FORMATION
SPUD REPORT Date of Spud:	REPERFORATE CURRENT FORMATION	SIDETRACK TO REPAIR WELL	TEMPORARY ABANDON
	TUBING REPAIR	VENT OR FLARE	WATER DISPOSAL
DRILLING REPORT		SI TA STATUS EXTENSION	APD EXTENSION
Report Date:	WILDCAT WELL DETERMINATION	OTHER	ОТНЕР
		OTHER	OTILE.
Newfield Production	completed operations, clearly show all peon Company respectfully request changed to the Ranch 15-10-	sts that the name of	Accepted by the Utah Division of Oil, Gas and Mining
			FOR RECORD ONLY
NAME (PLEASE PRINT)	PHONE NUMBER	TITLE	
Don Hamilton	435 719-2018	Permitting Agent (Star Poin	t Enterprises, Inc.)
SIGNATURE N/A		DATE 7/30/2014	

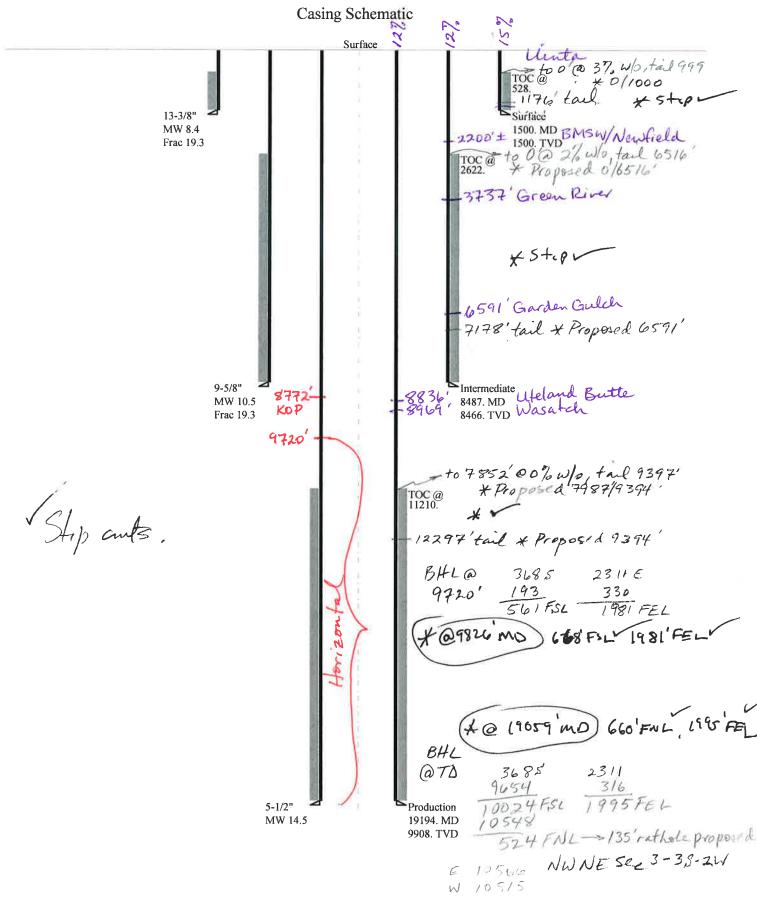
RECEIVED: Jul. 30, 2014

	STATE OF UTAH		FORM 9						
ı	DEPARTMENT OF NATURAL RESOURCES DIVISION OF OIL, GAS, AND MINING	i	5.LEASE DESIGNATION AND SERIAL NUMBER: Patented						
SUNDR	RY NOTICES AND REPORTS ON	WELLS	6. IF INDIAN, ALLOTTEE OR TRIBE NAME:						
	posals to drill new wells, significantly deep reenter plugged wells, or to drill horizontal l n for such proposals.		7.UNIT or CA AGREEMENT NAME:						
1. TYPE OF WELL Oil Well			8. WELL NAME and NUMBER: DART 15-10-3-3-2W-MW						
2. NAME OF OPERATOR: NEWFIELD PRODUCTION CO	DMPANY		9. API NUMBER: 43013522960000						
3. ADDRESS OF OPERATOR: 1001 17th Street, Suite 200		NE NUMBER: 3 382-4443 Ext	9. FIELD and POOL or WILDCAT: NORTH MYTON BENCH						
4. LOCATION OF WELL FOOTAGES AT SURFACE: 0368 FSL 2311 FEL			COUNTY: DUCHESNE						
QTR/QTR, SECTION, TOWNSH	HIP, RANGE, MERIDIAN: 10 Township: 03.0S Range: 02.0W Meridian:	U	STATE: UTAH						
11. CHECI	K APPROPRIATE BOXES TO INDICATE NA	ATURE OF NOTICE, REPOR	RT, OR OTHER DATA						
TYPE OF SUBMISSION		TYPE OF ACTION							
NOTICE OF INTENT Approximate date work will start: 7/15/2014	✓ CHANGE TO PREVIOUS PLANS	LITER CASING CHANGE TUBING COMMINGLE PRODUCING FORMATIONS	☐ CASING REPAIR ☐ CHANGE WELL NAME ☐ CONVERT WELL TYPE						
SUBSEQUENT REPORT Date of Work Completion:		RACTURE TREAT	■ NEW CONSTRUCTION ■ PLUG BACK						
SPUD REPORT Date of Spud:		ECLAMATION OF WELL SITE	RECOMPLETE DIFFERENT FORMATION TEMPORARY ABANDON						
DRILLING REPORT Report Date:	☐ water shutoff ☐ s	IENT OR FLARE II TA STATUS EXTENSION OTHER	☐ APD EXTENSION OTHER:						
Newfield Production Dart 15-10-3-2WH (from a 640 horizont well and that the 15-10-3-3-2W									
NAME (PLEASE PRINT) Don Hamilton	PHONE NUMBER 435 719-2018	TITLE Permitting Agent (Star Poin	t Enterprises, Inc.)						
SIGNATURE N/A	.	DATE 6/15/2014	. ,						

The Utah Division of Oil, Gas, and Mining


- State of Utah
- Department of Natural Resources

Electronic Permitting System - Sundry Notices


Sundry Conditions of Approval Well Number 43013522960000

As per the drilling plan, the production casing shall be properly cemented throughout the open portions outside the legal setbacks set forth in Board Cause No. 139-110 and shall not be completed outside of these legal setbacks without further approval (legal setbacks from dx survey indicated between depths of 9826' MD and 19059' MD).

RECEIVED: Jul. 29, 2014

43013522960000 Ute Tribal 15-10-3-3-2W-MWrev2

Well name: 43013522960000 Ute Tribal 15-10-3-3-2W-MWrev2

Operator: NEWFIELD PRODUCTION COMPANY

Operator. INCOME TO THE CONTRACT

String type: Surface Project ID: 43-013-52296

Location: DUCHESNE COUNTY

Design parameters: Minimum design factors: Environment:

CollapseCollapse:H2S considered?NoMud weight:8.400 ppgDesign factor1.125Surface temperature:74 °FDesign is based on evacuated pipe.Bottom hole temperature:95 °F

sign is based on evacuated pipe. Bottom hole temperature: 95 °F
Temperature gradient: 1.40 °F/100ft

Minimum section length: 100 ft

Burst:

Design factor 1.00 Cement top 528 ft

Burst May anticin

Max anticipated surface

pressure: 1,320 psi Internal gradient: 0.120 psi/ft <u>Tension</u>:

Internal gradient: 0.120 psi/ft Calculated BHP 0.120 psi 8 Round STC: Non-directional string.

8 Round LTC: 1.70 (J)

No backup mud specified. Buttress: 1.60 (J)
Premium: 1.50 (J)

Body yield: 1.50 (B) Re subsequent strings:

Tension is based on buoyed weight.

Neutral point: 1,314 ft

Next setting depth: 8,466 ft
Next mud weight: 10.500 ppg
Next setting BHP: 4,618 psi
Fracture mud wt: 19.250 ppg

Fracture mud wt: 19.250 ppg
Fracture depth: 1,500 ft
Injection pressure: 1,500 psi

Run Seq	Segment Length (ft)	Size (in)	Nominal Weight (Ibs/ft)	Grade	End Finish	True Vert Depth (ft)	Measured Depth (ft)	Drift Diameter (in)	Est. Cost (\$)	
1	1500	13.375	54.50	J-55	ST&C	1500	1500	12.49	18611	
Run Seq	Collapse Load (psi) 655	Collapse Strength (psi) 1130	Collapse Design Factor 1.727	Burst Load (psi) 1500	Burst Strength (psi) 2730	Burst Design Factor 1.82	Tension Load (kips) 71.6	Tension Strength (kips) 514	Tension Design Factor 7.18 J	
	000	1130	1.121	1500	2130	1.02	71.0	314	1.10 3	

Prepared Helen Sadik-Macdonald by: Div of Oil, Gas & Mining

Phone: 801 538-5357 FAX: 801-359-3940 Date: July 28,2014 Salt Lake City, Utah

Remarks:

Collapse is based on a vertical depth of 1500 ft, a mud weight of 8.4 ppg. The casing is considered to be evacuated for collapse purposes. Collapse strength is based on the Westcott, Dunlop & Kemler method of biaxial correction for tension.

Burst strength is not adjusted for tension.

Well name:

43013522960000 Ute Tribal 15-10-3-3-2W-MWrev2

Operator:

NEWFIELD PRODUCTION COMPANY

String type:

Intermediate

Project ID:

43-013-52296

Location:

DUCHESNE COUNTY

	n paramete	ers:			n design fac	tors:	Environme		A1 -
Collaps Mud	<u>se</u> weight:		10.500 ppg	Collapse: Design fac		1.125	H2S conside Surface tem		No 74 °F
	nal fluid den		4.950 ppg	Design lac	J.OI	1.125		temperature	
IIIICI	nai naia aci	ioity.	т.ооо ppg				Temperatur		1.40 °F/100ft
							•	ction length:	
				Burst:			wiii iii ii dan oc	onon longin.	1,000 10
				Design fac	etor	1.00	Cement top		2,622 ft
Burst				Doolgii ia	5.01	1.00	oomon top	•	Z,OZZ IC
	anticipated	surface							
	ressure:		5,284 psi						
	nal gradient		0.220 psi/ft	Tension:			Directional	well informa	ition:
	ulated BHP		7,146 psi	8 Round S	STC:	1.80 (J)	Kick-off po		8746 ft
			,	8 Round L	TC:	1.80 (J)	Departure		387 ft
Annı	ular backup:		3.15 ppg	Buttress:		1.60 (J)	Maximum		.2 °/100ft
	•			Premium:		1.50 (J)	Inclination		9.43 °
				Body yield	l:	1.60 (B)	Re subsequ	uent strings:	
						1-81	Next settin		9,908 ft
				Tension is	based on air	weight.	Next mud		14.500 ppg
				Neutral po	oint:	7,151 ft	Next settin	g BHP:	7,464 psi
							Fracture m	nud wt:	19.250 ppg
							Fracture d	epth:	8,466 ft
							Injection p	ressure:	8,466 psi
Run	Segment		Nominal		End	True Vert	Measured	Drift	Est.
Seq	Length	Size	Weight	Grade	Finish	Depth	Depth	Diameter	Cost
	(ft)	(in)	(lbs/ft)			(ft)	(ft)	(in)	(\$)
1	8487	9.625	40.00	N-80	Buttress	8466	8487	8.75	115557
Run	Collapse	Collapse	Collapse	Burst	Burst	Burst	Tension	Tension	Tension

Strength

(psi)

5750

Design

Factor

1.00

Prepared

Helen Sadik-Macdonald

Div of Oil, Gas & Mining

Strength

(psi)

3086

Load

(psi)

2441

Seq

1

Design

Factor

1.264

Load

(psi)

5761

Phone: 801 538-5357

Date: July 28,2014

Strength

(kips)

916.3

Load

(kips)

338.6

Design

Factor

2.71 B

FAX: 801-359-3940

Salt Lake City, Utah

Collapse is based on a vertical depth of 8466 ft, a mud weight of 10.5 ppg. An internal gradient of .257 psi/ft was used for collapse from TD Collapse strength is based on the Westcott, Dunlop & Kemler method of biaxial correction for tension.

Burst strength is not adjusted for tension.

Collapse strength is (biaxially) derated for doglegs in directional wells by multiplying the tensile stress by the cross section area to calculate a

Well name:

43013522960000 Ute Tribal 15-10-3-3-2W-MWrev2

Operator:

NEWFIELD PRODUCTION COMPANY

Production

Project ID:

String type:

Design parameters:

43-013-52296

Location:

DUCHESNE COUNTY

Minimum design factors: **Environment:**

Collapse

Mud weight: 14.500 ppg Design is based on evacuated pipe.

Collapse: Design factor 1.125 H2S considered?

No 74 °F Surface temperature: Bottom hole temperature: 213 °F

Temperature gradient: 1.40 °F/100ft Minimum section length: 1,000 ft

Burst:

Design factor

1.00 Cement top: 11,210 ft

Burst

Max anticipated surface

pressure: 5,284 psi 0.220 psi/ft Internal gradient: Calculated BHP 7,464 psi

No backup mud specified.

Tension:

1.80 (J) 8 Round STC: 8 Round LTC: 1.80 (J) Buttress: 1.60 (J) 1.50 (J) Premium:

Body yield: 1.60 (B)

Tension is based on air weight. Neutral point: 7,746 ft Directional well information:

Kick-off point 8746 ft Departure at shoe: 9662 ft 10.01 °/100ft Maximum dogleg: 86.89° Inclination at shoe:

Run Segment Nominal End True Vert Measured Drift Est. Seq Length Size Weight Grade **Finish** Depth Depth Diameter Cost (ft) (in) (lbs/ft) (ft) (ft) (in) (\$) 19194 20.00 9908 19194 4.653 159237 1 5.5 P-110 **Buttress** Collapse Run Collapse Collapse **Burst** Burst **Burst Tension Tension Tension** Load Strength Design Load Strength Load Strength Design Seq Design (psi) (psi) **Factor** (psi) (psi) **Factor** (kips) (kips) **Factor** 1 7464 11100 1.487 7464 12360 1.66 198.2 3.24 B 641.1

Prepared

Helen Sadik-Macdonald

Div of Oil, Gas & Mining

Phone: 801 538-5357 FAX: 801-359-3940

Date: July 28,2014 Salt Lake City, Utah

Collapse is based on a vertical depth of 9908 ft, a mud weight of 14.5 ppg. The casing is considered to be evacuated for collapse purposes. Collapse strength is based on the Westcott, Dunlop & Kemler method of biaxial correction for tension.

Burst strength is not adjusted for tension.

Collapse strength is (biaxially) derated for doglegs in directional wells by multiplying the tensile stress by the cross section area to calculate a

Well Name			15-10-3-3-2W-Mwray2	Mwrey? ADI 42-042 E220E 0000
)			S 3 21A/ MAureus	
			String 2	String 3
Casing Size (")		12.3/8	D	o Sumo
Setting Depth (TVD)		1500		2/1.6
Previous Shoe Setting Depth (TVD)	(Q)	OV		
Max Mud Weight (ppg)		8.4		9400
BOPE Proposed (psi)		500	8	
Casing Internal Yield (psi)		2730		
Operators Max Anticipated Pressure (psi)	sure (psi)	7213		
Calculations	String 1	13 3/8	-	
Max BHP [psi]	.052*Setting Depth*MW =	655		
				BOPE Adequate For Drilling And Setting Casing at Denth?
MASP (Gas) [psi]	Max BHP-(0.12*Setting Depth) =	475		Diverter air and or fresh water existem
MASP (Gas/Mud) [psi]	Max BHP-(0.22*Setting Depth) =	325		
			*Can Full Expect	*Can Full Expected Pressure Be Held At Previous Shoe?
Pressure At Previous Shoe	Max BHP22*(Setting Depth - Previous Shoe Depth) =	334	Q.	
Required Casing/BOPE Test Pressure	essure	1500 psi		
*Max Pressure Allowed @ Previous Casing Shoe	ious Casing Shoe =	40	40 psi	*Assumes 1psi/ff frac gradient
Calculations	String 2	. 8/9 6		
Max BHP [psi]	= .052*Setting Depth*MW	4622		
			ROPE Adecusate	ROPE Adequate For Drilling And Sotting Caping of Deaths
MASP (Gas) [psi]	Max BHP-(0.12*Setting Denth) ≈	2807	NEC -	EM DOD O
MASP (Gas/Mud) [psi]	P-(0.22*Setting Depth)	2760	YES	choke mainfold
			*Can Erill Evnace	Can End Evacated Dracemen Do Hold At Description
Pressure At Previous Shoe	Max BHP- 22*(Setting Denth - Previous Shoe Denth) =	3000	ON CIN	de l'essaie de neid At Previous Siloe l
Required Casing/BOPE Test Pressure		4005 nei		
*Max Pressure Allowed @ Previous Casing Shoe	ious Casing Shoe =	1500 psi	isi	*Assumes 10si/ft frac gradient
Calculations	String 3	5 1/2		
Max BHP [psi]	.052*Setting Depth*MW =	7471		
			BOPE Adequate	BOPE Adequate For Drilling And Setting Casing at Depth?
MASP (Gas) [psi]	Max BHP-(0.12*Setting Depth) =	6282	ON ON	5M BOP, 2 ram preventers, applican preventer rotation head
MASP (Gas/Mud) [psi]	Max BHP-(0.22*Setting Depth) =	5291	ON	anifold
			*Can Full Expect	*Can Full Expected Pressure Be Held At Previous Shoe?
Pressure At Previous Shoe	Max BHP22*(Setting Depth - Previous Shoe Depth) =	7153	YES	
Required Casing/BOPE Test Pressure	essure	5000 psi	psi	
*Max Pressure Allowed @ Previous Casing Shoe =	ious Casing Shoe =	5750 psi		*Assumes 1psi/ft frac gradient

Ute Tribal 15-10-3-3-2W-MW

Newfield Production Company respectfully requests that the Dart 15-10-3-2WH (private surface and mineral) be changed from a 640 horizontal lateral well to a 1280 horizontal lateral well and that the well name be changed to the Ute Tribal 15-10-3-3-2W-MW. The surface location of the well does not change. Newfield also made very minor changes to the pad layout. The MD will change from 13297' to 19194' and the TVD will change from 9125' to 9908'. Following are the updated locations along the intended well bore path:

- Surface Location: 368' FSL & 2311' FEL of Section 10, T3S, R2W, USB&M, (29.41' move);
- Top of Producing Interval: 660' FSL & 1980' FEL of Section 10, T3S, R2W, USB&M;
- Bottom of Producing Interval: 660' FNL & 1980' FEL of Section 3, T3S, R2W, USB&M;
- Bottom Hole: 525' FNL & 1980' FEL of Section 3, T3S, R2W, USB&M;

Attached please find an updated plat package, drilling plan, horizontal plan, exception letter and lease plat reflecting the changes. Surface use with Dart Homestead Ranch, Inc. remains in place with affidavit also attached.

RECEIVED: Jun. 15, 2014

NEWFIELD EXPLORATION COMPANY T3S, R2W, U.S.B.&M. Well location, RANCH #15-10-3-3-2W-MW, located as shown in the SW 1/4 SE 1/4 of Section 10, T3S, R2W, U.S.B.&M., Duchesne County, Utah. BASIS OF ELEVATION SPOT ELEVATION LOCATED AT THE SOUTHEAST CORNER OF SECTION 20, T3S, R2W, U.S.B.&M. TAKEN FROM THE MYTON, QUADRANGLE, UTAH, DUCHESNE COUNTY, 7.5 MINUTE QUAD (TOPOGRAPHIC MAP) PUBLISHED BY THE UNITED STATES DEPARTMENT OF THE INTERIOR, GEOLOGICAL SURVEY. SAID ELEVATION IS MARKED AS BEING 5148 FEET. BASIS OF BEARINGS BASIS OF BEARINGS IS A G.P.S. OBSERVATION. S89°15'21"W S89°16'03"W S8918'48"W - 2646.55' (Meas.) 1328.86' (Meas.) 1328.73' (Meas.) Mag Nail RR Spike Target Bottom Hole 660, 1980' 2618.92' (Meas. 1980 Bottom of Producing Interval Spike 1 NO0.23'07"W SCALE 3 Duchesne County . Rebar 2639. ,27"W NOO'02'58 S89°39'21"W - 2640.59' (Meas.) S89°53'01"W - 2636.30' (Meas.) Duchesne County Alum. Cap NAD 83 (SURFACE LOCATION) LATITUDE = 40'13'49.99" (40.230553) LONGITUDE = 110'05'40.34" (110.094539) NAD 27 (SURFACE LOCATION) LATITUDE = 40'13'50.14" (40.230594) LONGITUDE = 110'05'37.80" (110.093833) NAD 83 (TOP OF PRODUCING FORMATION) LATITUDE = 40°13'52.89" (40.231358) LONGITUDE = 110°05'36.08" (110.093356) NAD 27 (TOP OF PRODUCING FORMATION) LATITUDE = 40'13'53.03" (40.231397) LONGITUDE = 110'05'33.54" (110.092650) .83, NAD 83 (BOTTOM OF PRODUCING INTERVAL) 3936. LATITUDE = 40°15′24.05" (40.256681) LONGITUDE = 110°05′36.27" (110.093408) NAD 27 (BOTTOM OF PRODUCING INTERVAL) LATITUDE = 40°15′24.20" (40.256722) LONGITUDE = 110°05′33.73" (110.092703) NAD 83 (TARGET BOTTOM HOLE) LATITUDE = 40°15′25.39" (40.257053) LONGITUDE = 110°05′36.27" (110.093408) NAD 27 (TARGET BOTTOM HOLE) LATITUDE = 40°15′25.54" (40.257094) LONGITUDE = 110°05′33.72" (110.092700) 10 Plastic Cap, Rebai Top of Producing | Formation 1980' **RANCH** #15-10-3-3-2W-MW 2311 Elev. Ungraded Ground = 5345 CERTIFICATE D LAND S89°50'01"W - 2677.90' (Meas.) Set Marked S89°51'03"W - 2626.02' (Meas.) THIS IS TO CERTIFY THAT THE ABOVE BY WAS PREPARED PROFILED NOTES OF ACTUAL SURVEYS MADE BY ME OR UNDER MY? SUPERVISION AND THAT THE SAME AT THUS AND CORRECT TO BEST OF MY KNOWLEDGE AND BELIEF REGISTEED LAND SURVEYOR REVISED: 04-18-14 REVISED: 12-17-13 REGISTRATION NO. 161319 STATE OF TAHYTE (44) LINE TABLE REVISED: 11-06-13 LEGEND: LINE DIRECTION LENGTH UINTAH ENGINEERING & LAND SURVEYING $_{-}$ = 90° SYMBOL N48°23'22"E 441.29 85 SOUTH 200 EAST - VERNAL, UTAH 84078 = PROPOSED WELL HEAD. N00°02'41"E 135.01 (435) 789-1017 = SECTION CORNERS LOCATED. DATE SURVEYED: SCALE DATE DRAWN: 1" = 1000'04-22-13 05-28-13 PARTY REFERENCES C.A. R.L.L. S.F. G.L.O. PLAT

NEWFIELD EXPLORATION COMPANY

WEATHER

WARM

Newfield Production Company 15-10-3-3-2W-MW

Surface Hole Location: 368' FSL, 2311' FEL, Section 10, T3S, R2W Bottom Hole Location: 525' FNL, 1980' FEL, Section 3, T3S, R2W Duchesne County, UT

Drilling Program

1. Formation Tops

Uinta surface
Green River 3,737'
Garden Gulch 6,591'
Uteland Butte Member 8,836'
Wasatch 8,969'

Lateral TD 9,908' TVD / 19,194' MD

2. Depth to Oil, Gas, Water, or Minerals

 Base of moderately saline
 2,197'
 (water)

 Green River
 6,591'
 - 8,969'
 (oil)

 Wasatch
 8,969'
 - 9,908'
 (oil)

3. Pressure Control

Section BOP Description

Surface Diverter

Intermediate The BOP and related equipment shall meet the minimum requirements of Onshore

Oil and Gas Order No. 2 for equipment and testing requirements, procedures, etc for

a 5M system.

Prod/Prod Liner The BOP and related equipment shall meet the minimum requirements of Onshore

Oil and Gas Order No. 2 for equipment and testing requirements, procedures, etc for

a 5M system.

A 5M BOP system will consist of 2 ram preventers (double or two singles) and an annular preventer (see attached diagram). A choke manifold rated to at least 5,000

psi will be used.

4. Casing

	I	nterval	Weight	a ,		Pore	MW @	Frac	S	afety Factors	
Description	Тор	Bottom (TVD/MD)	(ppf)	Grade	Coup	Press @ Shoe	Shoe	Grad @ Shoe	Burst	Collapse	Tension
Conductor	0'	60'			Weld						
20	0	60'			weid						
Surface	0'	1.500'	54.5	J-55	STC	8.33	8.4	14	2,730	1,130	514,000
13 3/8	U	1,500'	34.3	J-55	510	8.33	0.4	14	2.89	2.63	6.29
Intrm Drilling	0'	8,466'	40	N 00	DTC	10	10.5	16	5,750	3,090	916,000
9 5/8	0	8,487'	40	N-80	BTC	10	10.5	16	1.30	1.34	2.70
Production	01	9,908'	20	D 110	DTC	1.4	14.5	17	12,360	11,080	641,000
5 1/2	0'	19,194'	20	P-110	BTC	14	14.5	17	2.16	1.85	1.67

Assumptions:

Surface casing MASP = (frac gradient + 1.0 ppg) - (gas gradient)

Intermediate casing drilling MASP = 0.5 ppg gas kick with a 70 bbl gain and frac at the shoe with a 1 ppg safety factor

Production casing MASP = (reservoir pressure) - (gas gradient)

Intermediate collapse calculations assume 50% evacuated

Maximum intermediate csg collapse load assumes loss of mud to a fluid level of 4,233'

Intermediate csg run from surface to 8,466' and will not experience full evacuation

Production csg run from surface to TD will isolate intermediate csg from production loads

Production csg withstands burst and collapse loads for anticipated production conditions

Surface & production collapse calcs assume fully evacuated casing w/a gas gradient

All tension calculations assume air weight of casing

Gas gradient = 0.15 psi/ft

All casing shall be new.

All casing strings shall have a minimum of 1 centralizer on each of the bottom 3 joints.

5. Cement

T.1.	Hole Size	Fill	Slame Description	ft ³	OH excess	Weight	Yield
Job	Hole Size	FIII	Slurry Description	sacks	OH excess	(ppg)	(ft ³ /sk)
Conductor	24	60'	Class G w/ 2% KCl + 0.25 lbs/sk Cello Flake	66	15%	15.8	1.17
Conductor	24	00	Class G W/ 2/0 KC1 + 0.25 lbs/sk CClio Flake	57	1370	13.8	1.17
Surface	17 1/2	1,000'	Varicem (Type III) + .125 lbs/sk Cello Flakes	799	15%	11.0	3.33
Lead	17 1/2	1,000	varicem (Type III) + .125 ibs/sk cello Flakes	240	1370	11.0	3.33
Surface	17 1/2	500'	Varicem (Type III) + .125 lbs/sk Cello Flakes	399	15%	13.0	1.9
Tail	1 / 1/2	300	Variceiii (Type III) + .123 ios/sk Ceiio Fiakes	210	13/0	13.0	1.9
Intermediate	12 1/4	6,591'	HLC Premium - 35% Poz/65% Glass G + 10%	2374	15%	11.0	3.53
Lead	12 1/4	0,391	bentonite	673	1370	11.0	3.33
Intermediate	12 1/4	1,896'	50/50 Poz/Class G + 1% bentonite	683	15%	14.0	1.29
Tail	12 1/4	1,090	50/30 1 02/Class G + 1/0 bentonite	529	1370	14.0	1.29
Production	8 3/4	1,407'	Elastiseal Unfoamed	391	10%	17.3	1 04
Lead	0 3/4	1,40/	Elasuscai Oliioaineu	212	1070	17.3	1.84
Production	8 3/4	0.8001	Elastiseal Foamed	2476	0%	14.5 - 17.3	1.84
Tail	0 3/4	9,800'	Elastiscai roamed	1345	0%	14.3 - 17.3	1.04

The surface casing will be cemented to surface. In the event that cement does not reach surface during the primary cement job, a remedial job will be performed.

Actual cement volumes for the intermediate casing string will be calculated from an open hole caliper log or gauge hole if logs are not ran, plus 15% excess.

The 5.5" production string will be run from surface to TD and cemented to setback. The cement slurries will be adjusted for hole conditions and blend test results. The lateral will be cemented past the setback.

The wellbore will cross the heal setback @ 9,394' MD
The first perforation will be within 19,059' MD

Per the directional plan, the bore hole will be drilled 135' past the toe setback for the rat hole and shoe track. This well will not be perforated or produced outside the legal setbacks.

6. Type and Characteristics of Proposed Circulating Medium

<u>Interval</u> <u>Description</u>

Surface - 1,500'

An air and/or fresh water system will be utilized. If an air rig is used, the blooie line discharge may be less than 100' from the wellbore in order to minimize location size. The blooie line is not equipped with an automatic igniter. The air compressor may be located less than 100' from the well bore due to the low possibility of combustion with the air/dust mixture. Water will be on location to be used as kill fluid, if necessary.

1,500' - 8,487'

A water based mud system will be utilized. Hole stability may be improved with additions of KCl or a similar inhibitive substance. In order to control formation pressure the system will be weighted with additions of bentonite, and if conditions warrant, with barite.

Anticipated maximum mud weight is

10.5 ppg.

8,487' - TD

One of two possible mud systems may be used depending on offset well performance on ongoing wells:

A water based mud: Hole stability may be improved with additions of KCl or a similar inhibitive substance. In order to control formation pressure the system will be weighted with additions of bentonite, and if conditions warrant, with barite.

-or-

A diesel based OBM system: with an oil to water ratio between 70/30 and 80/20. Emulsifiers and wetting agents will be used to maintain adequate mud properties. A water phase salinity will be maintained in the range of 25% using CaCl (Calcium Chloride). All cuttings will be dried and centrifuged so that they can be easily transferred to a lined cuttings pit with little to no free fluid on them. The cuttings will be mixed with fly ash prior to transportation to a location on Newfield owned surface. Once on Newfield owned surface, the cuttings will be treated with the previously approved FIRMUS process and used as a construction material on future location and/or roads on Newfield owned surface. The cuttings may also be transported to a state approved disposal facility.

Anticipated maximum mud weight is 14.5 ppg.

7. Logging, Coring, and Testing

Logging:

A dual induction, gamma ray, and caliper log may be run from KOP to the base of the surface casing. An azimuthal gamma ray LWD log will be run from the shoe of the intermediate casing to TD. A cement bond log will be run from KOP to the cement top behind the production casing and or intermediate casing.

Cores: As deemed necessary.

DST: There are no DST's planned for this well.

8. Anticipated Abnormal Pressure or Temperature

Maximum anticipated bottomhole pressure will be approximately equal to total depth (feet) multiplied by a 0.73 psi/ft gradient.

No abnormal temperature is expected. No H₂S is expected.

9. Other Aspects

The lateral of this well will target the Wasatch formation

After setting 9-5/8" casing, an 8-3/4" vertical hole will be drilled to a kick off point of

8,771'

Directional tools will then be used to build to

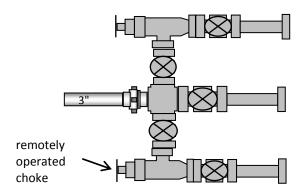
86.89 degrees inclination.

The lateral will be drilled to the bottomhole location shown on the plat. A 5-1/2" longstring will be run from surface to TD and cemented in place.

Newfield requests the following variances from Onshore Order #2:


 Variance from Onshoer Order #2, III.E.1
 Refer to Newfield Production Company Standard Operating Practices "Ute Tribal Green River Development Program" paragraph 9.0

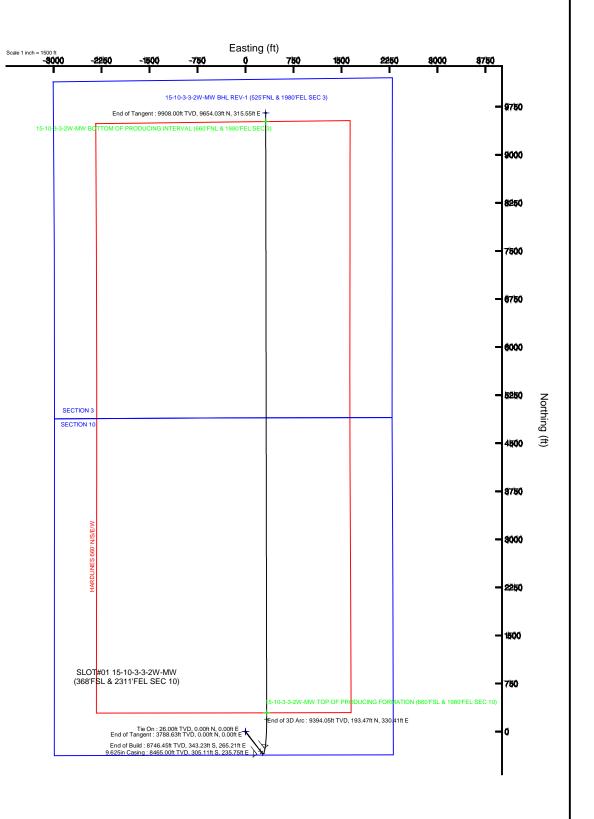
If oil based mud (OBM) is used and If Newfield owns the surface rights on the same drilling site at a location where construction is desired, the cuttings may be used for construction by a Firmus® process at that location. Otherwise, after the cuttings have been made safe for transport as described in paragraph 6, they will be transported to another location on which Newfield owns surface rights and there mixed, as part of a Firmus® process, with at least one additional chemical that will convert them to a temporarily uncured cementitious mixture that will be placed and shaped into a temporary desired final structure that will spontaneously harden within seven days after placement to form the desired structure. Samples of the temporary desired final structure may be taken for testing as described below (after the samples have hardened), or samples of the starting pretreated cuttings and mud will be taken during the construction and later mixed in a laboratory, molded, and cured to simulate the final structure as well as reasonably possible. Either these laboratory-made simulations of the final structure or samples of the temporary mixture itself after hardening, will be mechanically tested directly to determine their unconfined compressive strength and their hydraulic conductivity. Leachates of the mechanically tested structures themselves or of finer particles made by crushing and size-grading of the mechanically tested structures themselves to a specified particle size range will be analyzed, according to specified methods, for their contents of arsenic, barium, cadmium, chromium, lead, mercury, selenium, silver, zinc, benzene, total petroleum hydrocarbons (TPH), and chlorides, and the pH of these leachates will also be measured. The results of all these tests will be reported by Newfield to UDOGM at intervals as requested, along with the latitude and longitude (or other comparable location data) of the site of the useful constructions built.


Water flows in the surface hole are likely. If the water flow is less than 400 bbls/hr, the well will be allowed to flow until the surface casing point is reached and water will be hauled off location. If the water flow is greater than 400 bbls/hr, the water flow will be controlled with kill weight mud which will be maintained until TD. In both situations, the cement density will be adjusted to meet or exceed the mud weight needed to kill the water flow and the well will be shut in once cement is in place. If cement fails to reach the surface or falls back, a top job will be performed to bring cement to surface. Any water flows will be sampled and tested and results will be sent to UDOGM.

A diveter will be used to drill the surface hole interval.

Typical 5M BOP stack configuration

Typical 5M choke manifold configuration


Plot reference wellpath is 15-10-3-3-2W-MW REV-A.0 PWP NEWFIELD PRODUCTION COMPANY True vertical depths are referenced to PIONEER 44 (RT) Grid System: NAD83 / Lambert Utah SP, Central Zone (4302), US feet Measured depths are referenced to PIONEER 44 (RT) North Reference: True north Slot: SLOT#01 15-10-3-3-2W-MW (368'FSL & 2311'FEL SEC 10) Scale: True distance Field: DUCHESNE COUNTY Well: 15-10-3-3-2W-MW Mean Sea Level to Mud line (At Slot: SLOT#01 15-10-3-3-2W-MW (368'FSL & 2311'FEL SEC 10)); 0 feet Depths are in feet Facility: SEC.10-T03S-R02W Wellbore: 15-10-3-3-2W-MW PWB Well Profile Data **NEWFIELD Design Comment** Az (°) TVD (ft) Local N (ft) Local E (ft) DLS (°/100ft) VS (ft) MD (ft) Inc (°) Tie On 26.00 0.000 142.307 26.00 0.00 0.00 0.00 End of Tangent 3788.63 0.000 142.307 3788.63 0.00 0.00 0.00 0.00 0.20 -334.38 End of Build 8771.71 10.000 142.307 8746.45 -343.23 265.21 End of 3D Arc 9719.87 86.890 359.910 9394.05 193.47 10.00 204.16 End of Tangent 19194.39 86.890 359.910 9908.00 9654.03 315.55 0.00 9659.18 Location Information SEC.10-T03S-R02W 2032800.897 7255787.977 40°13'49.990"N 110°05'40.340"W 2250 Grid East (US ft) Grid North (US ft) SLOT#01 15-10-3-3-2W-MW (368'FSL & 2311'FFL SEC 10) 7255787 977 40°13'49 990"N 110°05'40 340"W PIONEER 44 (RT) to Mud line (At Slot: SLOT#01 15-10-3-3-2W-MW (368'FSL & 2311'FEL SEC 10)) Mean Sea Level to Mud line (At Slot: SLOT#01 15-10-3-3-2W-MW (368'FSL & 2311'FEL SEC 10)) 8000 PIONEER 44 (RT) to Mean Sea Level 5369ft **Targets** 8750 15-10-3-3-2W-MW SECTION 10 40°13'49.990'N End of Tangent: 0.00° Inc, 3788.63ft MD, 3788.63ft TVD, 0.00ft VS 15-10-3-3-2W-MW SECTION 3 2032800.90 7255787.98 40°13'49.990"N 110°05'40.340"W 110°05'36.080"W 9654.03 110°05'36.270"W 40°15'25.390"N 4500 Survey Program Log Name/Comment Start MD (ft) End MD (ft) Tool Model Wellbore 5250 True Vertical Depth (ft) 26.00 19194.39 NaviTrak NaviTrak (Standard) 15-10-3-3-2W-MW PWB 6000 0.20°/100ft 6750 7500 BGGM (1945.0 to 2015.0) Dip: 65.85° Field: 52026.1 nT Magnetic North is 11.08 degrees East of True North (at 5/9/2014) 8250 To correct azimuth from Magnetic to True add 11.08 degrees 9.625in Casing: 9.43° Inc, 8486.17ft MD, 8465.00ft TVD, -297.24ft VS End of Build: 10.00° Inc, 8771.71ft MD, 8746.45ft TVD, -334.38ft VS 9000 End of 3D Arc : 86 89° Inc. 9719 87ft MD, 9394 05ft TVD, 204 16ft VS 15-10-3-3-2W-MW BOTTOM OF PRODUCING INTERVAL (660'FNL & 1980'FEL SEC 3) 15-10-3-3-2W-MW TOP OF PRODUCING FORMATION (660'FSL & 1980'FEL SEC 10) 9750 + End of Tangent: 86.89° Inc, 19194.39ft MD, 9908.00ft TVD, 9659.18ft VS 15-10-3-3-2W-MW BHL REV-1 (525'FNL & 1980'FEL SEC 3) 8000 6750 9000 9750 7500 9750 10500 11250 Scale 1 inch = 1500 ft Azimuth 1.87° with reference 0.00 N. 0.00 E

NEWFIELD PRODUCTION COMPANY									
Location:	UTAH	Slot:	SLOT#01 15-10-3-3-2W-MW (368	3'FSL & 2311'FEL SEC 10)					
Field:	DUCHESNE COUNTY	Well:	15-10-3-3-2W-MW						
Facility:	SEC.10-T03S-R02W	Wellbore:	15-10-3-3-2W-MW PWB						
Plot referen	nce wellpath is 15-10-3-3-2W	V-MW REV-A.0	PWP						
True vertical depti	hs are referenced to PIONEER 44 (RT)			Grid System: NAD83 / Lambert Utah SP, Central Zone (4302), US feet					
Measured depths	Measured depths are referenced to PIONEER 44 (RT) North Reference: True north								
PIONEER 44 (RT) to Mean Sea Level: 5369 feet Scale: True distance									
Mean Sea Level to	o Mud line (At Slot: SLOT#01 15-10-3-3-2W	-MW (368'FSL & 2311'	FEL SEC 10)): 0 feet	Depths are in feet					

П					Wellpath	Comments				
П	MD (ft)	X (ft)	Y (ft)	TVD (ft)	Inclination (°)	Azimuth (°)	VS (ft)	Comment		
Ш	2197.00	0.00	0.00	2197.00	0.000	142.307	0.00	USABLE WATER		
Ш	3737.00	0.00	0.00	3737.00	0.000	142.307	0.00	GREEN RIVER FORMATION		
П	5685.39	38.51	-49.84	5684.00	3.806	142.307	-48.55	TRONA		
П	5817.71	44.07	-57.03	5816.00	4.072	142.307	-55.56	MAHOGANY BENCH		
П	6592.50	84.11	-108.86	6588.00	5.627	142.307	-106.05	GARDEN GULCH (GG)		
П	6843.83	99.85	-129.23	6838.00	6.131	142.307	-125.90	GARDEN GULCH 1 (GG1)		
H	7016.87	111.47	-144.26	7010.00	6.478	142.307	-140.55	GARDEN GULCH 2 (GG2)		
Н	7728.49	165.95	-214.77	7716.00	7.906	142.307	-209.23	DOUGLAS CREEK MEMBER		
Н	8437.52	230.90	-298.83	8417.00	9.329	142.307	-291.13	LOWER BLACK SHALE		
Н	8554.10	242.60	-313.97	8532.00	9.563	142.307	-305.88	CASTLE PEAK LIMESTONE		
Н	8703.23	257.99	-333.88	8679.00	9.863	142.307	-325.28	CP LIMES		
Н	8847.94	273.32	-348.66	8822.00	6.103	92.586	-339.54	UTELAND BUTTE		
IJ	8983.89	287.51	-333.25	8956.00	14.584	23.807	-323.68	WASATCH		
	9154.59	303.81	-269.95	9113.00	30.893	9.858	-259.88	WASATCH 10		
	9253.26	311.93	-212.97	9193.00	40.594	6.736	-202.66	WASATCH 12		
	9458.11	324.55	-55.74	9322.00	60.879	2.988	-45.11	WASATCH 15		
	9564.70	328.42	41.54	9365.00	71.465	1.629	52.24	WASATCH 15 BASE LIME		
	9661.89	330.18	135.83	9388.00	81.126	0.533	146.55	WASATCH 15 TARGET		

REFER	REFERENCE WELLPATH IDENTIFICATION								
Operator	NEWFIELD PRODUCTION COMPANY	Slot	SLOT#01 15-10-3-3-2W-MW (368'FSL & 2311'FEL SEC 10)						
Area	UTAH	Well	15-10-3-3-2W-MW						
Field	DUCHESNE COUNTY	Wellbore	15-10-3-3-2W-MW PWB						
Facility	SEC.10-T03S-R02W								

REPORT SETU	REPORT SETUP INFORMATION										
Projection System	NAD83 / Lambert Utah SP, Central Zone (4302), US	Software System	WellArchitect® 4.0.0								
	feet										
North Reference	True	User	Wagnjam								
Scale	0.999923	Report Generated	5/9/2014 at 2:27:15 PM								
Convergence at slot	n/a	Database/Source file	WA_Denver/15-10-3-3-2W-MW_PWB.xml								

WELLPATH LOCATION										
	Local coo	rdinates	Grid co	ordinates	Geographic coordinates					
	North[ft]	East[ft]	Easting[US ft]	Northing[US ft]	Latitude	Longitude				
Slot Location	0.00	0.00	2032800.90	7255787.98	40°13'49.990"N	110°05'40.340"W				
Facility Reference Pt			2032800.90	7255787.98	40°13'49.990"N	110°05'40.340"W				
Field Reference Pt			1997327.35	7254397.58	40°13'41.510"N	110°13'17.950"W				

WELLPATH DATUM									
Calculation method	Minimum curvature	PIONEER 44 (RT) to Facility Vertical Datum	5369.00ft						
Horizontal Reference Pt	Slot	PIONEER 44 (RT) to Mean Sea Level	5369.00ft						
Vertical Reference Pt	PIONEER 44 (RT)	PIONEER 44 (RT) to Mud Line at Slot (SLOT#01 15-10-3-3-2W-MW (368'FSL & 2311'FEL SEC 10))	5369.00ft						
MD Reference Pt	PIONEER 44 (RT)	Section Origin	N 0.00, E 0.00 ft						
Field Vertical Reference	Mean Sea Level	Section Azimuth	1.87°						

REFER	REFERENCE WELLPATH IDENTIFICATION								
Operator	NEWFIELD PRODUCTION COMPANY	Slot	SLOT#01 15-10-3-3-2W-MW (368'FSL & 2311'FEL SEC 10)						
Area	UTAH	Well	15-10-3-3-2W-MW						
Field	DUCHESNE COUNTY	Wellbore	15-10-3-3-2W-MW PWB						
Facility	SEC.10-T03S-R02W								

WELLPATH	WELLPATH DATA (215 stations) † = interpolated/extrapolated station										
MD	Inclination	Azimuth	TVD	Vert Sect	North	East	DLS	Comments			
[ft]	[°]	[°]	[ft]	[ft]	[ft]	[ft]	[°/100ft]				
0.00†	0.000	142.307	0.00	0.00	0.00	0.00	0.00				
26.00	0.000	142.307	26.00	0.00	0.00	0.00	0.00	Tie On			
126.00†	0.000	142.307	126.00	0.00	0.00	0.00	0.00				
226.00†	0.000	142.307	226.00	0.00	0.00	0.00	0.00				
326.00†	0.000	142.307	326.00	0.00	0.00	0.00	0.00				
426.00†	0.000	142.307	426.00	0.00	0.00	0.00	0.00				
526.00†	0.000	142.307	526.00	0.00	0.00	0.00	0.00				
626.00†	0.000	142.307	626.00	0.00	0.00	0.00	0.00				
726.00†	0.000	142.307	726.00	0.00	0.00	0.00	0.00				
826.00†	0.000	142.307	826.00	0.00	0.00	0.00	0.00				
926.00†	0.000	142.307	926.00	0.00	0.00	0.00	0.00				
1026.00†	0.000	142.307	1026.00	0.00	0.00	0.00	0.00				
1126.00†	0.000	142.307	1126.00	0.00	0.00	0.00	0.00				
1226.00†	0.000	142.307	1226.00	0.00	0.00	0.00	0.00				
1326.00†	0.000	142.307	1326.00	0.00	0.00	0.00	0.00				
1426.00†	0.000	142.307	1426.00	0.00	0.00	0.00	0.00				
1526.00†	0.000	142.307	1526.00	0.00	0.00	0.00	0.00				
1626.00†	0.000	142.307	1626.00	0.00	0.00	0.00	0.00				
1726.00†	0.000	142.307	1726.00	0.00	0.00	0.00	0.00				
1826.00†	0.000	142.307	1826.00	0.00	0.00	0.00	0.00				
1926.00†	0.000	142.307	1926.00	0.00	0.00	0.00	0.00				
2026.00†	0.000	142.307	2026.00	0.00	0.00	0.00	0.00				
2126.00†	0.000	142.307	2126.00	0.00	0.00	0.00	0.00				
2197.00†	0.000	142.307	2197.00	0.00	0.00	0.00	0.00	USABLE WATER			
2226.00†	0.000	142.307	2226.00	0.00	0.00	0.00	0.00				
2326.00†	0.000	142.307	2326.00	0.00	0.00	0.00	0.00				
2426.00†	0.000	142.307	2426.00	0.00	0.00	0.00	0.00				
2526.00†	0.000	142.307	2526.00	0.00	0.00	0.00	0.00				
2626.00†	0.000	142.307	2626.00	0.00	0.00	0.00	0.00				
2726.00†	0.000	142.307	2726.00	0.00	0.00	0.00	0.00				

REFERENCE WELLPATH IDENTIFICATION								
Operator	NEWFIELD PRODUCTION COMPANY	Slot	SLOT#01 15-10-3-3-2W-MW (368'FSL & 2311'FEL SEC 10)					
Area	UTAH	Well	15-10-3-3-2W-MW					
Field	DUCHESNE COUNTY	Wellbore	15-10-3-3-2W-MW PWB					
Facility	SEC.10-T03S-R02W							

WELLPATI	H DATA (215	stations)	† = interpola	ted/extrapolat	ted station			
MD	Inclination	Azimuth	TVD	Vert Sect	North	East	DLS	Comments
[ft]	[°]	[°]	[ft]	[ft]	[ft]	[ft]	[°/100ft]	
2826.00†	0.000	142.307	2826.00	0.00	0.00	0.00	0.00	
2926.00†	0.000	142.307	2926.00	0.00	0.00	0.00	0.00	
3026.00†	0.000	142.307	3026.00	0.00	0.00	0.00	0.00	
3126.00†	0.000	142.307	3126.00	0.00	0.00	0.00	0.00	
3226.00†	0.000	142.307	3226.00	0.00	0.00	0.00	0.00	
3326.00†	0.000	142.307	3326.00	0.00	0.00	0.00	0.00	
3426.00†	0.000	142.307	3426.00	0.00	0.00	0.00	0.00	
3526.00†	0.000	142.307	3526.00	0.00	0.00	0.00	0.00	
3626.00†	0.000	142.307	3626.00	0.00	0.00	0.00	0.00	
3726.00†	0.000	142.307	3726.00	0.00	0.00	0.00	0.00	
3737.00†	0.000	142.307	3737.00	0.00	0.00	0.00	0.00	GREEN RIVER FORMATION
3788.63	0.000	142.307	3788.63	0.00	0.00	0.00	0.00	End of Tangent
3826.00†	0.075	142.307	3826.00	-0.02	-0.02	0.01	0.20	
3926.00†	0.276	142.307	3926.00	-0.25	-0.26	0.20	0.20	
4026.00†	0.476	142.307	4026.00	-0.76	-0.78	0.60	0.20	
4126.00†	0.677	142.307	4125.99	-1.54	-1.58	1.22	0.20	
4226.00†	0.878	142.307	4225.98	-2.58	-2.65	2.05	0.20	
4326.00†	1.078	142.307	4325.97	-3.90	-4.00	3.09	0.20	
4426.00†	1.279	142.307	4425.95	-5.48	-5.63	4.35	0.20	
4526.00†	1.480	142.307	4525.92	-7.34	-7.53	5.82	0.20	
4626.00†	1.680	142.307	4625.88	-9.47	-9.72	7.51	0.20	
4726.00†	1.881	142.307	4725.83	-11.86	-12.18	9.41	0.20	
4826.00†	2.082	142.307	4825.77	-14.53	-14.91	11.52	0.20	
4926.00†	2.282	142.307	4925.70	-17.46	-17.92	13.85	0.20	
5026.00†	2.483	142.307	5025.61	-20.67	-21.21	16.39	0.20	
5126.00†	2.684	142.307	5125.51	-24.14	-24.78	19.15	0.20	
5226.00†	2.885	142.307	5225.39	-27.89	-28.62	22.12	0.20	
5326.00†	3.085	142.307	5325.26	-31.90	-32.74	25.30	0.20	
5426.00†	3.286	142.307	5425.10	-36.18	-37.14	28.70	0.20	
5526.00†	3.487	142.307	5524.93	-40.74	-41.82	32.31	0.20	

REFER	REFERENCE WELLPATH IDENTIFICATION								
Operator	NEWFIELD PRODUCTION COMPANY	Slot	SLOT#01 15-10-3-3-2W-MW (368'FSL & 2311'FEL SEC 10)						
Area	UTAH	Well	15-10-3-3-2W-MW						
Field	DUCHESNE COUNTY	Wellbore	15-10-3-3-2W-MW PWB						
Facility	SEC.10-T03S-R02W								

WELLPATI	H DATA (21:	5 stations)	† = interpo	lated/extrapol	ated station			
MD	Inclination	Azimuth	TVD	Vert Sect	North	East	DLS	Comments
[ft]	[°]	[°]	[ft]	[ft]	[ft]	[ft]	[°/100ft]	
5626.00†	3.687	142.307	5624.73	-45.56	-46.77	36.14	0.20	
5685.39†	3.806	142.307	5684.00	-48.55	-49.84	38.51		TRONA
5726.00†	3.888	142.307	5724.51	-50.65	-51.99	40.17	0.20	
5817.71†	4.072	142.307	5816.00	-55.56	-57.03	44.07		MAHOGANY BENCH
5826.00†	4.089	142.307	5824.27	-56.02	-57.50	44.43	0.20	
5926.00†	4.289	142.307	5924.00	-61.65	-63.28	48.89	0.20	
6026.00†	4.490	142.307	6023.71	-67.55	-69.33	53.57	0.20	
6126.00†	4.691	142.307	6123.39	-73.72	-75.67	58.47	0.20	
6226.00†	4.891	142.307	6223.04	-80.15	-82.28	63.57	0.20	
6326.00†	5.092	142.307	6322.66	-86.86	-89.16	68.89	0.20	
6426.00†	5.293	142.307	6422.25	-93.84	-96.32	74.43	0.20	
6526.00†	5.493	142.307	6521.81	-101.08	-103.76	80.17	0.20	
6592.50†	5.627	142.307	6588.00	-106.05	-108.86	84.11	0.20	GARDEN GULCH (GG)
6626.00†	5.694	142.307	6621.33	-108.60	-111.47	86.13	0.20	
6726.00†	5.895	142.307	6720.82	-116.38	-119.46	92.31	0.20	
6826.00†	6.095	142.307	6820.27	-124.43	-127.73	98.69	0.20	
6843.83†	6.131	142.307	6838.00	-125.90	-129.23	99.85	0.20	GARDEN GULCH 1 (GG1)
6926.00†	6.296	142.307	6919.69	-132.75	-136.27	105.29	0.20	
7016.87†	6.478	142.307	7010.00	-140.55	-144.26	111.47	0.20	GARDEN GULCH 2 (GG2)
7026.00†	6.497	142.307	7019.07	-141.34	-145.08	112.10	0.20	
7126.00†	6.697	142.307	7118.41	-150.20	-154.17	119.13	0.20	
7226.00†	6.898	142.307	7217.70	-159.32	-163.54	126.36	0.20	
7326.00†	7.099	142.307	7316.96	-168.72	-173.18	133.81	0.20	
7426.00†	7.299	142.307	7416.17	-178.38	-183.10	141.48	0.20	
7526.00†	7.500	142.307	7515.34	-188.30	-193.29	149.35	0.20	
7626.00†	7.701	142.307	7614.46	-198.50	-203.75	157.44	0.20	
7726.00†	7.901	142.307	7713.53	-208.96	-214.49	165.74	0.20	
7728.49†	7.906	142.307	7716.00	-209.23	-214.77	165.95	0.20	DOUGLAS CREEK MEMBER
7826.00†	8.102	142.307	7812.56	-219.70	-225.51	174.25	0.20	
7926.00†	8.303	142.307	7911.53	-230.69	-236.80	182.97	0.20	

REFERENCE WELLPATH IDENTIFICATION							
Operator	NEWFIELD PRODUCTION COMPANY	Slot	SLOT#01 15-10-3-3-2W-MW (368'FSL & 2311'FEL SEC 10)				
Area	UTAH	Well	15-10-3-3-2W-MW				
Field	DUCHESNE COUNTY	Wellbore	15-10-3-3-2W-MW PWB				
Facility	SEC.10-T03S-R02W						

D	Inclination	Azimuth	TVD	Vert Sect	North	East	DLS	Comments
[ft]	[°]	[°]	[ft]	[ft]	[ft]	[ft]	[°/100ft]	
8026.00†	8.504	142.307	8010.46	-241.96	-248.36	191.91	0.20	
3126.00†	8.704	142.307	8109.34	-253.49	-260.20	201.05	0.20	
3226.00†	8.905	142.307	8208.16	-265.29	-272.31	210.41	0.20	
326.00†	9.106	142.307	8306.92	-277.36	-284.70	219.98	0.20	
3426.00†	9.306	142.307	8405.64	-289.69	-297.36	229.76	0.20	
3437.52†	9.329	142.307	8417.00	-291.13	-298.83	230.90	0.20	LOWER BLACK SHALE
3526.00†	9.507	142.307	8504.29	-302.29	-310.29	239.76	0.20	
3554.10†	9.563	142.307	8532.00	-305.88	-313.97	242.60	0.20	CASTLE PEAK LIMESTONE
8626.00†	9.708	142.307	8602.89	-315.16	-323.50	249.96	0.20	
3703.23†	9.863	142.307	8679.00	-325.28	-333.88	257.99	0.20	CP LIMES
3726.00†	9.908	142.307	8701.43	-328.29	-336.98	260.38	0.20	
3771.71	10.000	142.307	8746.45	-334.38	-343.23	265.21	0.20	End of Build
8826.00†	6.591	112.045	8800.19	-339.09	-348.13	270.98	10.00	
8847.94†	6.103	92.586	8822.00	-339.54	-348.66	273.32	10.00	UTELAND BUTTE
3926.00†	9.642	38.517	8899.40	-334.34	-343.72	281.55	10.00	
3983.89†	14.584	23.807	8956.00	-323.68	-333.25	287.51	10.00	WASATCH
0026.00†	18.486	18.203	8996.36	-312.35	-322.05	291.74	10.00	
126.00†	28.102	11.113	9088.12	-273.79	-283.79	301.26	10.00	
154.59†	30.893	9.858	9113.00	-259.88	-269.95	303.81	10.00	WASATCH 10
226.00†	37.906	7.460	9171.89	-219.84	-230.08	309.80	10.00	
9253.26†	40.594	6.736	9193.00	-202.66	-212.97	311.93	10.00	WASATCH 12
326.00†	47.782	5.137	9245.13	-152.12	-162.57	317.13	10.00	
9426.00†	57.692	3.449	9305.60	-72.71	-83.30	323.00	10.00	
9458.11†	60.879	2.988	9322.00	-45.11	-55.74	324.55	10.00	WASATCH 15
9526.00†	67.620	2.098	9351.48	15.99	5.31	327.25	10.00	
9564.70†	71.465	1.629	9365.00	52.24	41.54	328.42	10.00	WASATCH 15 BASE LIME
0626.00†	77.558	0.928	9381.36	111.29	100.57	329.74	10.00	
0661.89†	81.126	0.533	9388.00	146.55	135.83	330.18	10.00	WASATCH 15 TARGET
719.87	86.890	359.910	9394.05 ¹	204.16	193.47	330.41	10.00	End of 3D Arc
726.00†	86.890	359.910	9394.38	210.28	199.59	330.40	0.00	

Planned Wellpath Report 15-10-3-3-2W-MW REV-A.0 PWP

Page 6 of 11

REFERENCE WELLPATH IDENTIFICATION

Operator NEWFIELD PRODUCTION COMPANY
Area UTAH
Field DUCHESNE COUNTY

Well 15-10-3-3-2W-MW (368'FSL & 2311'FEL SEC 10)
Well 15-10-3-3-2W-MW
Wellbore 15-10-3-3-2W-MW PWB

Facility SEC.10-T03S-R02W

MD	TA (215 station	Azimuth	ated/extrapolate	Vert Sect	North	East	DLS	Comments
[ft]	[°]	[°]	[ft]	[ft]	[ft]	[ft]	[°/100ft]	Comments
9826.00†	86.890	359.910	9399.81	310.07	299.44	330.24	0.00	
9926.00†	86.890	359.910	9405.23	409.87	399.30	330.08	0.00	
10026.00†	86.890	359.910	9410.66	509.66	499.15	329.93	0.00	
10126.00†	86.890	359.910	9416.08	609.46	599.00	329.77	0.00	
10226.00†	86.890	359.910	9421.51	709.25	698.86	329.61	0.00	
10326.00†	86.890	359.910	9426.93	809.04	798.71	329.46	0.00	
10426.00†	86.890	359.910	9432.35	908.84	898.56	329.30	0.00	
10526.00†	86.890	359.910	9437.78	1008.63	998.41	329.14	0.00	
10626.00†	86.890	359.910	9443.20	1108.43	1098.27	328.98	0.00	
10726.00†	86.890	359.910	9448.63	1208.22	1198.12	328.83	0.00	
10826.00†	86.890	359.910	9454.05	1308.02	1297.97	328.67	0.00	
10926.00†	86.890	359.910	9459.48	1407.81	1397.82	328.51	0.00	
11026.00†	86.890	359.910	9464.90	1507.60	1497.68	328.36	0.00	
11126.00†	86.890	359.910	9470.33	1607.40	1597.53	328.20	0.00	
11226.00†	86.890	359.910	9475.75	1707.19	1697.38	328.04	0.00	
11326.00†	86.890	359.910	9481.18	1806.99	1797.23	327.89	0.00	
11426.00†	86.890	359.910	9486.60	1906.78	1897.09	327.73	0.00	
11526.00†	86.890	359.910	9492.02	2006.58	1996.94	327.57	0.00	
11626.00†	86.890	359.910	9497.45	2106.37	2096.79	327.42	0.00	
11726.00†	86.890	359.910	9502.87	2206.16	2196.64	327.26	0.00	
11826.00†	86.890	359.910	9508.30	2305.96	2296.50	327.10	0.00	
11926.00†	86.890	359.910	9513.72	2405.75	2396.35	326.95	0.00	
12026.00†	86.890	359.910	9519.15	2505.55	2496.20	326.79	0.00	
12126.00†	86.890	359.910	9524.57	2605.34	2596.06	326.63	0.00	
12226.00†	86.890	359.910	9530.00	2705.13	2695.91	326.48	0.00	
12326.00†	86.890	359.910	9535.42	2804.93	2795.76	326.32	0.00	
12426.00†	86.890	359.910	9540.85	2904.72	2895.61	326.16	0.00	
12526.00†	86.890	359.910	9546.27	3004.52	2995.47	326.01	0.00	
12626.00†	86.890	359.910	9551.69	3104.31	3095.32	325.85	0.00	
12726.00†	86.890	359.910	9557.12	3204.11	3195.17	325.69	0.00	

Planned Wellpath Report 15-10-3-3-2W-MW REV-A.0 PWP

REFER	REFERENCE WELLPATH IDENTIFICATION						
Operator	NEWFIELD PRODUCTION COMPANY	Slot	SLOT#01 15-10-3-3-2W-MW (368'FSL & 2311'FEL SEC 10)				
Area	UTAH	Well	15-10-3-3-2W-MW				
Field	DUCHESNE COUNTY	Wellbore	15-10-3-3-2W-MW PWB				
Facility	SEC.10-T03S-R02W						

ELLPATH DA	TA (215 station	s) †= interpo	lated/extrapolate	ed station				
MD [ft]	Inclination [°]	Azimuth [°]	TVD [ft]	Vert Sect [ft]	North [ft]	East [ft]	DLS [°/100ft]	Comments
12826.00†	86.890	359.910	9562.54	3303.90	3295.02	325.54	0.00	
12926.00†	86.890	359.910	9567.97	3403.69	3394.88	325.38	0.00	
13026.00†	86.890	359.910	9573.39	3503.49	3494.73	325.22	0.00	1
13126.00†	86.890	359.910	9578.82	3603.28	3594.58	325.07	0.00	
13226.00†	86.890	359.910	9584.24	3703.08	3694.43	324.91	0.00	
13326.00†	86.890	359.910	9589.67	3802.87	3794.29	324.75	0.00	
13426.00†	86.890	359.910	9595.09	3902.67	3894.14	324.59	0.00	
13526.00†	86.890	359.910	9600.52	4002.46	3993.99	324.44	0.00	
13626.00†	86.890	359.910	9605.94	4102.25	4093.85	324.28	0.00	
13726.00†	86.890	359.910	9611.36	4202.05	4193.70	324.12	0.00	
13826.00†	86.890	359.910	9616.79	4301.84	4293.55	323.97	0.00	
13926.00†	86.890	359.910	9622.21	4401.64	4393.40	323.81	0.00	
14026.00†	86.890	359.910	9627.64	4501.43	4493.26	323.65	0.00	
14126.00†	86.890	359.910	9633.06	4601.22	4593.11	323.50	0.00	
14226.00†	86.890	359.910	9638.49	4701.02	4692.96	323.34	0.00	
14326.00†	86.890	359.910	9643.91	4800.81	4792.81	323.18	0.00	
14426.00†	86.890	359.910	9649.34	4900.61	4892.67	323.03	0.00	
14526.00†	86.890	359.910	9654.76	5000.40	4992.52	322.87	0.00	
14626.00†	86.890	359.910	9660.19	5100.20	5092.37	322.71	0.00	
14726.00†	86.890	359.910	9665.61	5199.99	5192.22	322.56	0.00	
14826.00†	86.890	359.910	9671.03	5299.78	5292.08	322.40	0.00	
14926.00†	86.890	359.910	9676.46	5399.58	5391.93	322.24	0.00	
15026.00†	86.890	359.910	9681.88	5499.37	5491.78	322.09	0.00	
15126.00†	86.890	359.910	9687.31	5599.17	5591.63	321.93	0.00	
15226.00†	86.890	359.910	9692.73	5698.96	5691.49	321.77	0.00	
15326.00†	86.890	359.910	9698.16	5798.76	5791.34	321.62	0.00	
15426.00†	86.890	359.910	9703.58	5898.55	5891.19	321.46	0.00	
15526.00†	86.890	359.910	9709.01	5998.34	5991.05	321.30	0.00	
15626.00†	86.890	359.910	9714.43	6098.14	6090.90	321.15	0.00	
15726.00†	86.890	359.910	9719.86	6197.93	6190.75	320.99	0.00	

Planned Wellpath Report 15-10-3-3-2W-MW REV-A.0 PWP

Page 8 of 11

REFER	REFERENCE WELLPATH IDENTIFICATION					
Operator	NEWFIELD PRODUCTION COMPANY	Slot	SLOT#01 15-10-3-3-2W-MW (368'FSL & 2311'FEL SEC 10)			
Area	UTAH	Well	15-10-3-3-2W-MW			
Field	DUCHESNE COUNTY	Wellbore	15-10-3-3-2W-MW PWB			
Facility	SEC.10-T03S-R02W					

ELLPATH DA	TA (215 station	s) †= interpo	lated/extrapolate	ed station				
MD [ft]	Inclination [°]	Azimuth [°]	TVD [ft]	Vert Sect [ft]	North [ft]	East [ft]	DLS [°/100ft]	Comments
15826.00†	86.890	359.910	9725.28	6297.73	6290.60	320.83	0.00	
15926.00†	86.890	359.910	9730.70	6397.52	6390.46	320.68	0.00	
16026.00†	86.890	359.910	9736.13	6497.31	6490.31	320.52	0.00	
16126.00†	86.890	359.910	9741.55	6597.11	6590.16	320.36	0.00	
16226.00†	86.890	359.910	9746.98	6696.90	6690.01	320.20	0.00	
16326.00†	86.890	359.910	9752.40	6796.70	6789.87	320.05	0.00	
16426.00†	86.890	359.910	9757.83	6896.49	6889.72	319.89	0.00	
16526.00†	86.890	359.910	9763.25	6996.29	6989.57	319.73	0.00	
16626.00†	86.890	359.910	9768.68	7096.08	7089.42	319.58	0.00	
16726.00†	86.890	359.910	9774.10	7195.87	7189.28	319.42	0.00	
16826.00†	86.890	359.910	9779.53	7295.67	7289.13	319.26	0.00	
16926.00†	86.890	359.910	9784.95	7395.46	7388.98	319.11	0.00	
17026.00†	86.890	359.910	9790.37	7495.26	7488.83	318.95	0.00	
17126.00†	86.890	359.910	9795.80	7595.05	7588.69	318.79	0.00	
17226.00†	86.890	359.910	9801.22	7694.85	7688.54	318.64	0.00	
17326.00†	86.890	359.910	9806.65	7794.64	7788.39	318.48	0.00	
17426.00†	86.890	359.910	9812.07	7894.43	7888.25	318.32	0.00	
17526.00†	86.890	359.910	9817.50	7994.23	7988.10	318.17	0.00	
17626.00†	86.890	359.910	9822.92	8094.02	8087.95	318.01	0.00	
17726.00†	86.890	359.910	9828.35	8193.82	8187.80	317.85	0.00	
17826.00†	86.890	359.910	9833.77	8293.61	8287.66	317.70	0.00	
17926.00†	86.890	359.910	9839.20	8393.41	8387.51	317.54	0.00	
18026.00†	86.890	359.910	9844.62	8493.20	8487.36	317.38	0.00	
18126.00†	86.890	359.910	9850.04	8592.99	8587.21	317.23	0.00	
18226.00†	86.890	359.910	9855.47	8692.79	8687.07	317.07	0.00	
18326.00†	86.890	359.910	9860.89	8792.58	8786.92	316.91	0.00	
18426.00†	86.890	359.910	9866.32	8892.38	8886.77	316.76	0.00	
18526.00†	86.890	359.910	9871.74	8992.17	8986.62	316.60	0.00	
18626.00†	86.890	359.910	9877.17	9091.96	9086.48	316.44	0.00	
18726.00†	86.890	359.910	9882.59	9191.76	9186.33	316.29	0.00	

Planned Wellpath Report 15-10-3-3-2W-MW REV-A.0 PWP

Page 9 of 11

REFER	REFERENCE WELLPATH IDENTIFICATION						
Operator	NEWFIELD PRODUCTION COMPANY	Slot	SLOT#01 15-10-3-3-2W-MW (368'FSL & 2311'FEL SEC 10)				
Area	UTAH	Well	15-10-3-3-2W-MW				
Field	DUCHESNE COUNTY	Wellbore	15-10-3-3-2W-MW PWB				
Facility	SEC.10-T03S-R02W						

WELLPATH D	WELLPATH DATA (215 stations) † = interpolated/extrapolated station								
MD	Inclination	Azimuth	TVD	Vert Sect	North	East	DLS	Comments	
[ft]	I°I	I ^M	[ft]	[ft]	[ft]	[ft]	[°/100ft]		
18826.00†	86.890	359.910	9888.02	9291.55	9286.18	316.13	0.00		
18926.00†	86.890	359.910	9893.44	9391.35	9386.03	315.97	0.00		
19026.00†	86.890	359.910	9898.87	9491.14	9485.89	315.81	0.00		
19126.00†	86.890	359.910	9904.29	9590.94	9585.74	315.66	0.00		
19194.39	86.890	359.910	9908.00 ²	9659.18	9654.03	315.55	0.00	End of Tangent	

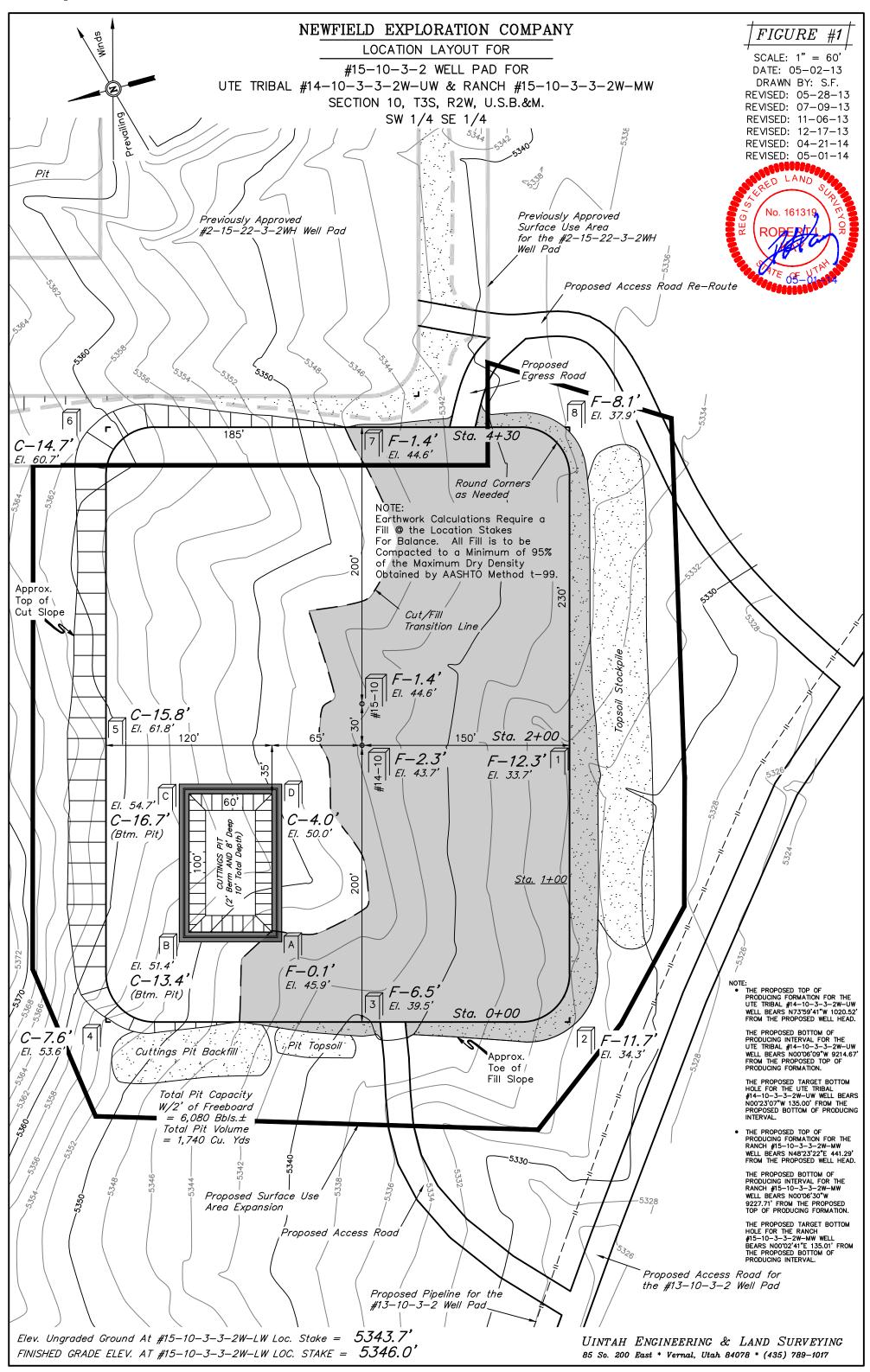
HOLE & CASING	HOLE & CASING SECTIONS - Ref Wellbore: 15-10-3-3-2W-MW PWB Ref Wellpath: 15-10-3-3-2W-MW REV-A.0 PWP								
String/Diameter	Start MD [ft]	End MD [ft]	Interval [ft]	Start TVD [ft]	End TVD [ft]	Start N/S [ft]	Start E/W [ft]	End N/S [ft]	End E/W [ft]
9.625in Casing	26.00	8486.17	8460.17	26.00	8465.00	0.00	0.00	-305.11	235.75

Planned Wellpath Report 15-10-3-3-2W-MW REV-A.0 PWP

REFER	REFERENCE WELLPATH IDENTIFICATION						
Operator	NEWFIELD PRODUCTION COMPANY	Slot	SLOT#01 15-10-3-3-2W-MW (368'FSL & 2311'FEL SEC 10)				
Area	UTAH	Well	15-10-3-3-2W-MW				
Field	DUCHESNE COUNTY	Wellbore	15-10-3-3-2W-MW PWB				
Facility	SEC.10-T03S-R02W						

TARGETS									
Name	MD [ft]	TVD [ft]	North [ft]	East [ft]	Grid East [US ft]	Grid North [US ft]	Latitude	Longitude	Shape
15-10-3-3-2W-MW SECTION 10		0.00	0.00	0.00	2032800.90	7255787.98	40°13'49.990"N	110°05'40.340"W	polygon
15-10-3-3-2W-MW SECTION 3		0.00	0.00	0.00	2032800.90	7255787.98	40°13'49.990"N	110°05'40.340"W	polygon
1) 15-10-3-3-2W-MW TOP OF PRODUCING FORMATION (660'FSL & 1980'FEL SEC 10)		9394.05	293.47	330.41	2033126.62	7256086.58	40°13'52.890"N	110°05'36.080"W	point
2) 15-10-3-3-2W-MW BHL REV-1 (525'FNL & 1980'FEL SEC 3)	19194.39	9908.00	9654.03	315.55	2032964.70	7265445.00	40°15'25.390"N	110°05'36.270"W	point
15-10-3-3-2W-MW BOTTOM OF PRODUCING INTERVAL (660'FNL & 1980'FEL SEC 3)		9908.00	9518.42	315.55	2032966.84	7265309.43	40°15'24.050"N	110°05'36.270"W	point
15-10-3-3-2W-MW HARDLINES 660' N/S/E/W		9908.00	0.00	0.00	2032800.90	7255787.98	40°13'49.990"N	110°05'40.340"W	polygon

SURVEY PR	ROGRAM - 1	Ref Wellbore: 15-10-3-3-2W-MW PWB	Ref Wellpath: 15-10-3-3-2W-MW R	EV-A.0 PWP
Start MD	End MD	Positional Uncertainty Model	Log Name/Comment	Wellbore
[ft]	[ft]			
26.00	19194.39	NaviTrak (Standard)		15-10-3-3-2W-MW PWB


Planned Wellpath Report 15-10-3-3-2W-MW REV-A.0 PWP

Page 11 of 11

REFER	REFERENCE WELLPATH IDENTIFICATION						
Operator	NEWFIELD PRODUCTION COMPANY	Slot	SLOT#01 15-10-3-3-2W-MW (368'FSL & 2311'FEL SEC 10)				
Area	UTAH	Well	15-10-3-3-2W-MW				
Field	DUCHESNE COUNTY	Wellbore	15-10-3-3-2W-MW PWB				
Facility	SEC.10-T03S-R02W						

LLPATH CO	OMMENTS			
MD [ft]	Inclination [°]	Azimuth [°]	TVD [ft]	Comment
2197.00	0.000	142.307	2197.00	USABLE WATER
3737.00	0.000	142.307	3737.00	GREEN RIVER FORMATION
5685.39	3.806	142.307	5684.00	TRONA
5817.71	4.072	142.307	5816.00	MAHOGANY BENCH
6592.50	5.627	142.307	6588.00	GARDEN GULCH (GG)
6843.83	6.131	142.307	6838.00	GARDEN GULCH 1 (GG1)
7016.87	6.478	142.307	7010.00	GARDEN GULCH 2 (GG2)
7728.49	7.906	142.307	7716.00	DOUGLAS CREEK MEMBER
8437.52	9.329	142.307	8417.00	LOWER BLACK SHALE
8554.10	9.563	142.307	8532.00	CASTLE PEAK LIMESTONE
8703.23	9.863	142.307	8679.00	CP LIMES
8847.94	6.103	92.586	8822.00	UTELAND BUTTE
8983.89	14.584	23.807	8956.00	WASATCH
9154.59	30.893	9.858	9113.00	WASATCH 10
9253.26	40.594	6.736	9193.00	WASATCH 12
9458.11	60.879	2.988	9322.00	WASATCH 15
9564.70	71.465	1.629	9365.00	WASATCH 15 BASE LIME
9661.89	81.126	0.533	9388.00	WASATCH 15 TARGET

Sundry Number: 52118 API Well Number: 43013522960000 NEWFIELD EXPLORATION COMPANY FIGURE #2 4 TYPICAL CROSS SECTIONS FOR X-Section II Scale #15-10-3-2 WELL PAD FOR $1" = 100'_{-}$ UTE TRIBAL #14-10-3-3-2W-UW & RANCH #15-10-3-3-2W-MW DATE: 05-02-13 SECTION 10, T3S, R2W, U.S.B.&M. DRAWN BY: S.F. SW 1/4 SE 1/4 REVISED: 05-28-13 REVISED: 07-09-13 REVISED: 11-06-13 REVISED: 12-17-13 REVISED: 04-21-14 REVISED: 05-01-14 185' 150' Finished Grade FILL STA. 4+30 185' #14-10-3-3-2W-UW LOCATION STAKE FILL STA. 2+00 65' 150' $Slope = 1 \ 1/2:1$ (Typ.) · FILL STA. 1+00 185' 150' Preconstruction STA. 0+00

APPROXIMATE ACREAGE

ORIGINAL PROPOSED WELL SITE DISTURBANCE = \pm 5.702 ACRES

NEW (ADDITIONAL TO ORIGINAL) PROPOSED

EXPANSION WELL SITE DISTURBANCE = \pm 5.058 ACRES ACCESS ROAD DISTURBANCE = \pm 0.427 ACRES

PIPELINE DISTURBANCE = \pm 0.204 ACRES

 $TOTAL = \pm 11.391 ACRES$

APPROXIMATE YARDAGES

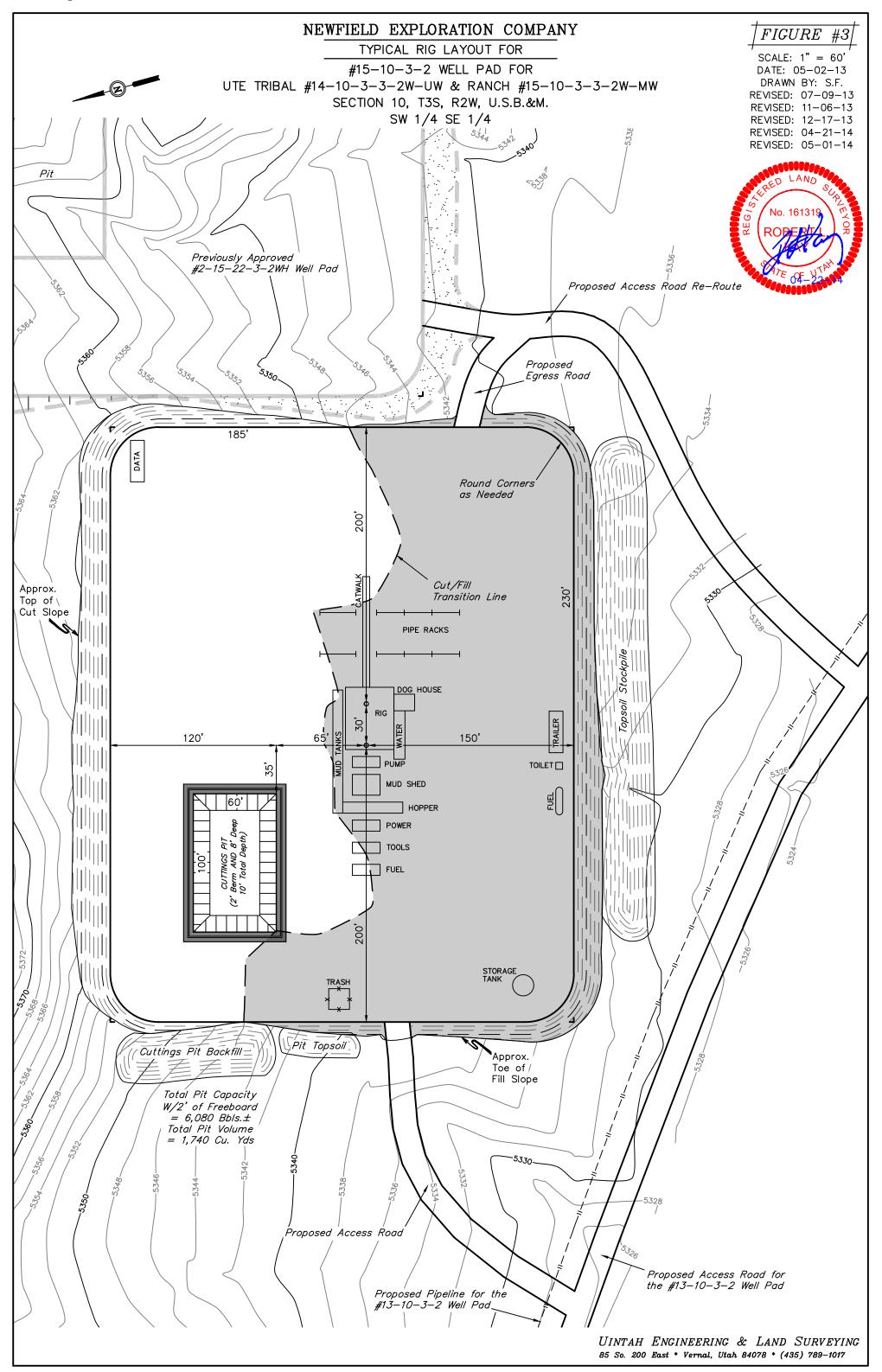
(6") Topsoil Stripping = *3,100* Cu. Yds. Remaining Location = 19,880 Cu. Yds.

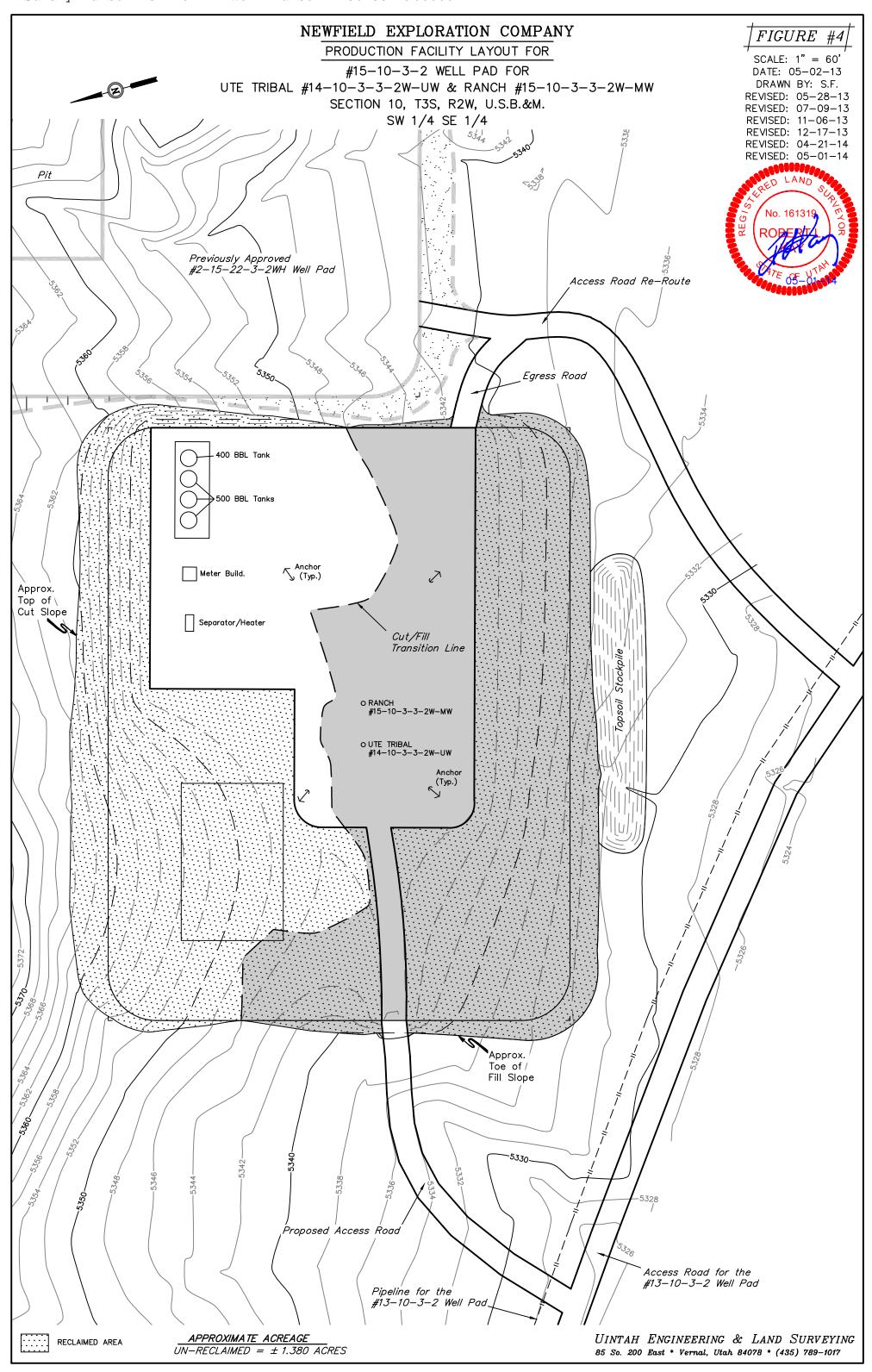
> TOTAL CUT 22,980 CU. YDS. **FILL** 19,010 CU. YDS.

* NOTE:

FILL QUANTITY INCLUDES

5% FOR COMPACTION

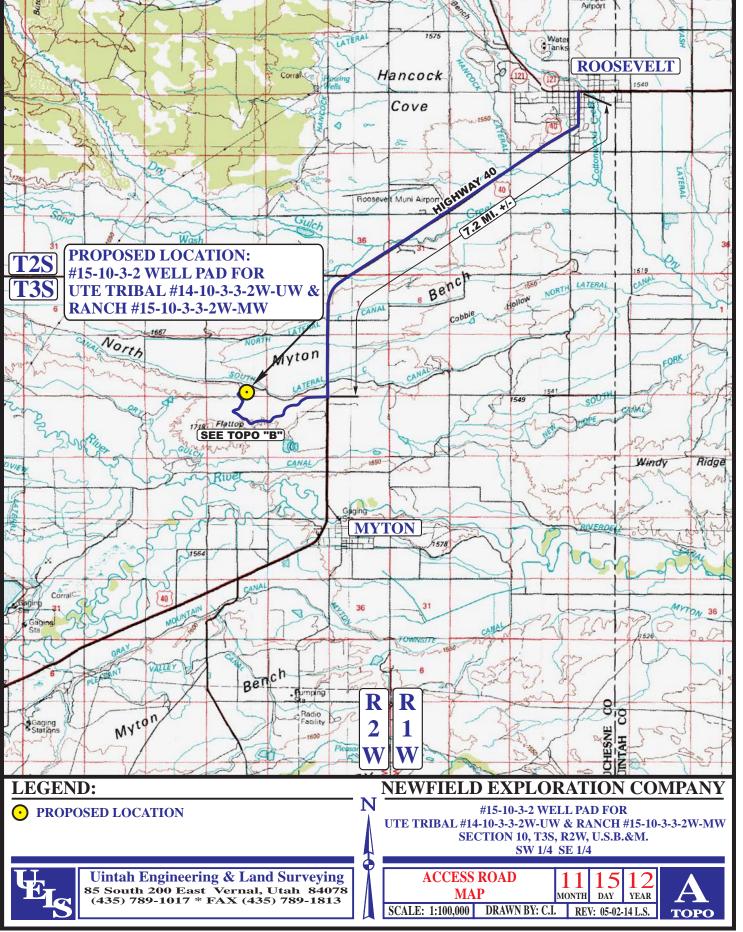

EXCESS MATERIAL Topsoil & Pit Backfill

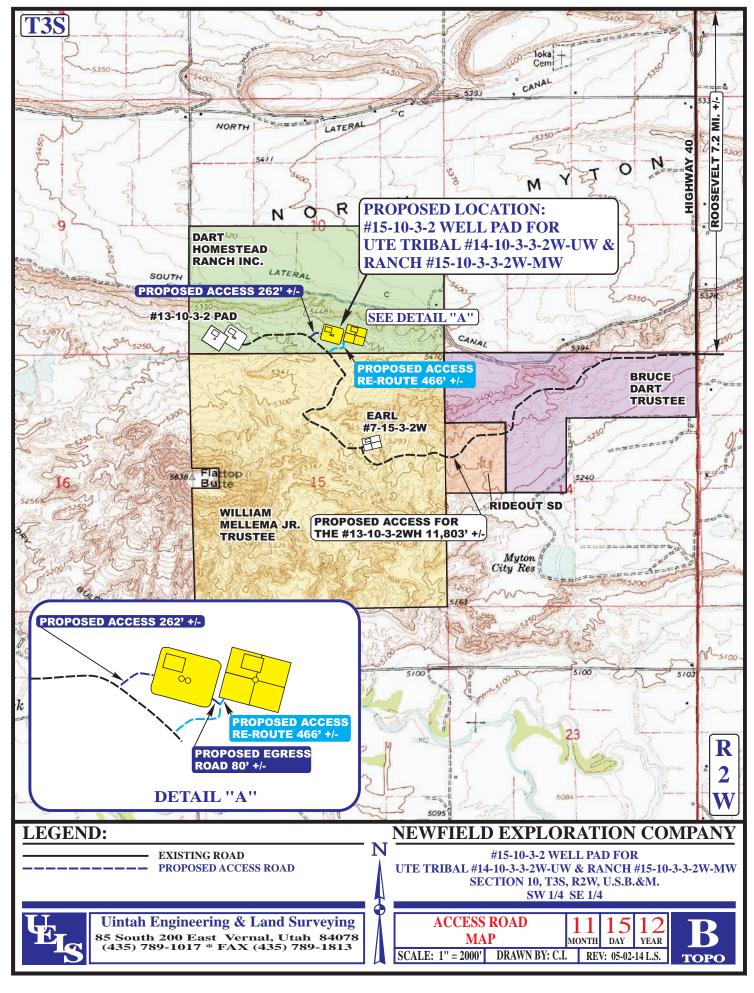

= 3,970 Cu. Yds. = 3,970 Cu. Yds.

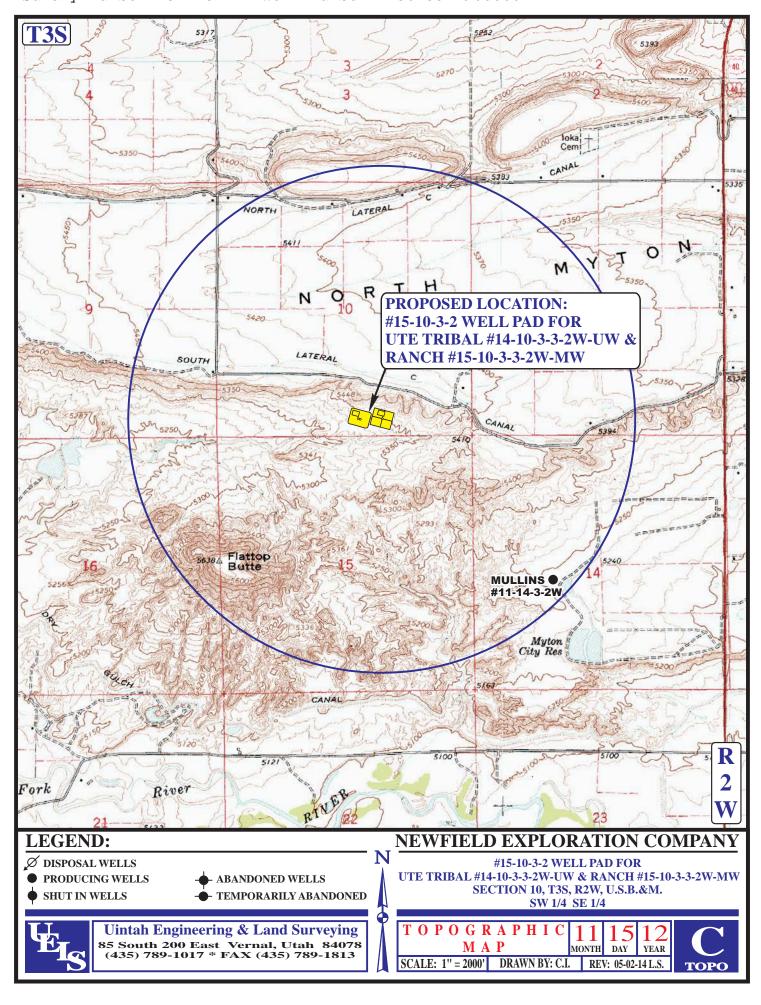
(1/2 Pit Vol.)

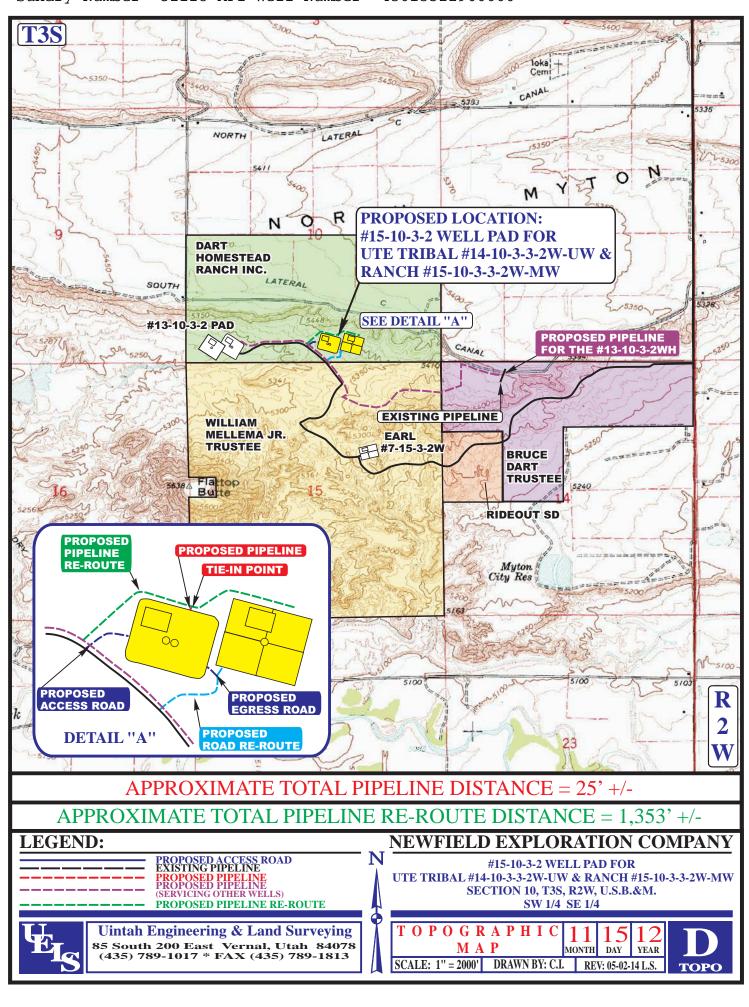
EXCESS UNBALANCE O Cu. Yds. (After Interim Rehabilitation)

UINTAH ENGINEERING & LAND SURVEYING 85 So. 200 East * Vernal, Utah 84078 * (435) 789-1017

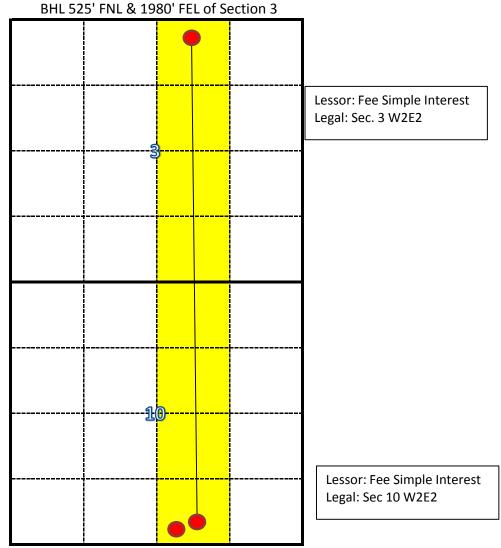



#15-10-3-2 WELL PAD FOR UTE TRIBAL #14-10-3-3-2W-UW & RANCH #15-10-3-3-2W-MW SECTION 10, T3S, R2W, U.S.B.&M.


PROCEED IN A SOUTHERLY, THEN SOUTHWESTERLY, THEN SOUTHERLY DIRECTION FROM ROOSEVELT, UTAH ALONG U.S. HIGHWAY 40 APPROXIMATELY 7.2 MILES TO THE BEGINNING OF THE PROPOSED ACCESS FOR THE #13-10-3-2 WELL PAD TO THE WEST; FOLLOW ROAD FLAGS IN A WESTERLY, THEN SOUTHWESTERLY, THEN NORTHWESTERLY, THEN NORTHWESTERLY, THEN NORTHEASTERLY, THEN NORTHWESTERLY DIRECTION APPROXIMATELY 11,803' TO THE BEGINNING OF THE PROPOSED ACCESS TO THE NORTHEAST; FOLLOW ROAD FLAGS IN A NORTHEASTERLY DIRECTION APPROXIMATELY 262' TO THE PROPOSED LOCATION.


TOTAL DISTANCE FROM ROOSEVELT, UTAH TO THE PROPOSED LOCATION IS APPROXIMATELY 9.5 MILES.

Sundry Number: 52118 API Well Number: 43013522960000 Municipal Airport Water ROOSEVELT Hancock Cove Roosevelt Muni Airport **PROPOSED LOCATION:** #15-10-3-2 WELL PAD FOR Benc **T3S UTE TRIBAL #14-10-3-3-2W-UW &** CANAL RANCH #15-10-3-3-2W-MW North lyton FORK. SEE TOPO "B" Windy Ridge **MYTON** 40 Bench Myton Radio Facility **LEGEND:** NEWFIELD EXPLORATION COMPANY N #15-10-3-2 WELL PAD FOR • PROPOSED LOCATION UTE TRIBAL #14-10-3-3-2W-UW & RANCH #15-10-3-3-2W-MW **SECTION 10, T3S, R2W, U.S.B.&M.** SW 1/4 SE 1/4 **Uintah Engineering & Land Surveying ACCESS ROAD**



Plat depiction including Lease Numbers

Ranch 15-10-3-3-2W-MW

SHL 368' FSL & 2311' FEL of Section 10 Top of Producing Interval 660' FSL & 1980' FEL of Section 10 Bottom of Producing Interval 660' FNL & 1980' FEL of Section 3

May 20, 2014

State of Utah Division of Oil, Gas & Mining ATTN: Brad Hill PO Box 145801 Salt Lake City, UT 84114

RE:

Ranch 15-10-3-3-2WH-MW

Township 3 South, Range 2 West, Sections 3 & 10

Duchesne County, Utah

Mr. Hill,

NEWFIELD

Newfield Exploration Company

1001 17th Street | Suite 2000 Denver, Colorado 80202 PH 303-893-0102 | FAX 303-893-0103

Newfield Production Company ("Newfield") proposes to drill the Ranch 15-10-3-3-2WH-MW from a surface location of 368' FSL and 2311' FEL of Section 10, T3S R2W, to a bottom hole location of 525'FNL and 1980' FEL of Section 3, T3S R2W.

The Ranch 15-10-3-3-2WH-MW is covered by Order No. 139-110, which requires no portion of the producing interval of the horizontal lateral be closer than 660' from the northern or southern section boundaries and no closer than 660' from the eastern or western section boundaries, and requires proper surface and sub-surface authorization be obtained when the surface location is located off of the drilling unit.

In compliance with the above referenced Order, the top of the uppermost producing zone of the Ranch 15-10-3-3-2WH-MW is 660' FSL and 1980' FEL of Section 10, T3S, R2W, and the bottom of the producing interval is 660' FNL, 1980' FEL of Section 3, T3S, R2W. Newfield shall case and cement the Ranch 15-10-3-3-2WH-MW wellbore from the surface location to the point where the wellbore reaches the legal setback and the wellbore will only be completed within the legal setback. The bottom of the producing interval is 660' FNL, 1980' FEL of Section 3, T3S, R2W, which is within the legal setback. In the event a future recompletion outside of this setback is proposed, Newfield shall attempt to acquire consent from all the owners in Section 34, T2S, R2W, or Section 15, T3S, R2W, and shall file the appropriate application with the State.

Newfield has also obtained authorization from the surface owner of the drilling location, as is evidenced by the Affidavit of Easement, Right-of-Way and Surface Use Agreement attached to the APD. Newfield and its partners are the leasehold owners of the minerals underlying the surface location and all that portion of the wellbore of the Ranch 15-10-3-3-2WH-MW lying outside the drilling unit.

Based on Newfield's compliance with the requirements of Order No. 139-110, Newfield respectfully requests the approval of our APD for the Ranch 15-10-3-3-2WH-MW.

If you have any questions or require further information, please do not hesitate to contact the undersigned at 303-382-4466 or by email at rnmiller@newfield.com. Your consideration of this matter is greatly appreciated.

Sincerely,

Robert N. Miller II

Landman

AFFIDAVIT OF EASEMENT, RIGHT-OF-WAY AND SURFACE USE AGREEMENT

<u>Greg Boggs</u> personally appeared before me, being duly sworn, deposes and with respect to State of Utah R649-3-34.7 says:

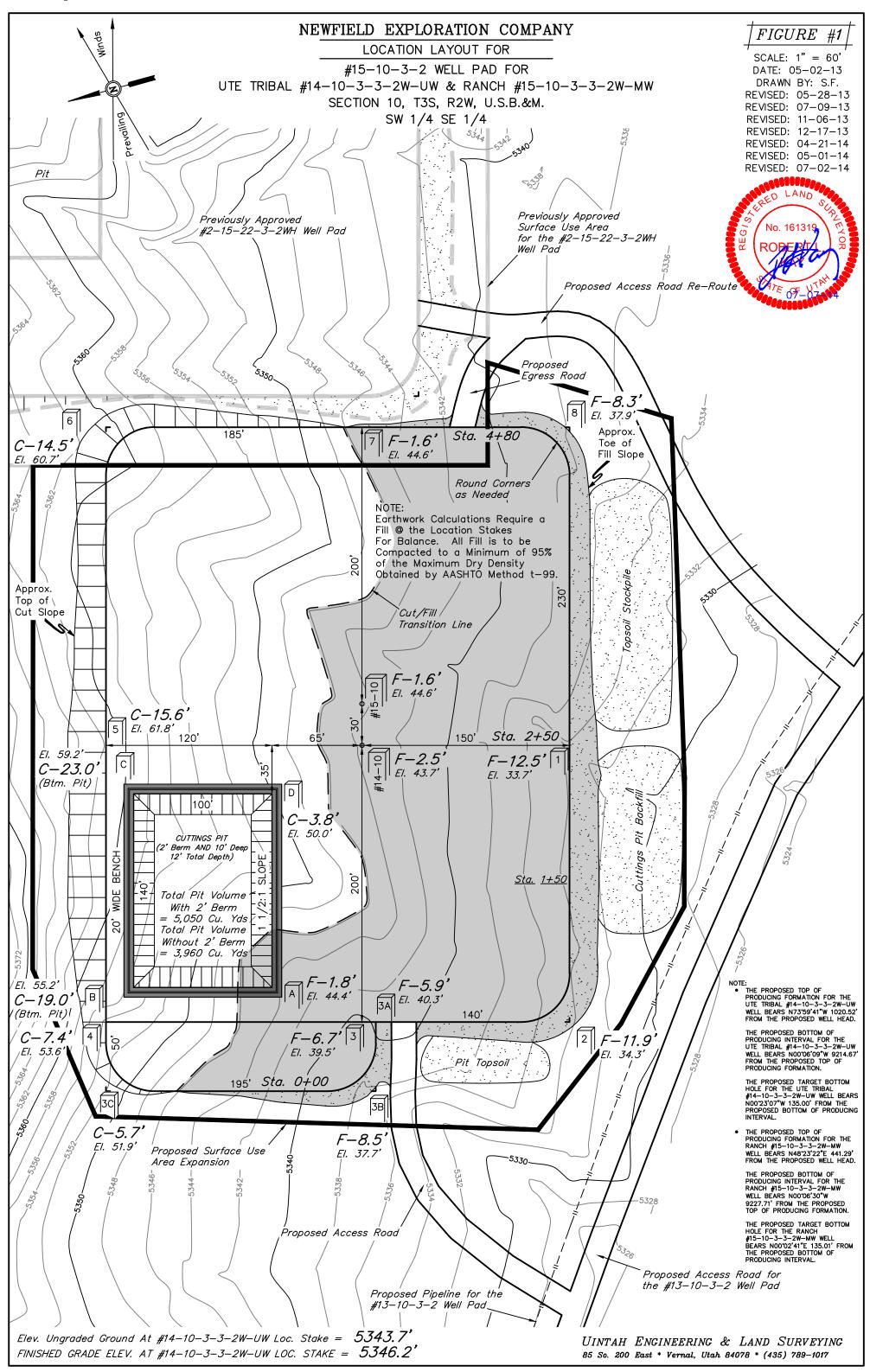
- 1. My name is <u>Greg Boggs</u>. I am a Land Lead for Newfield Production Company, whose address is 1001 17th Street, Suite 2000, Denver, CO 80202 ("Newfield").
- 2. Newfield is the Operator of the proposed <u>15-10-3-2 well pad</u> with a surface location to be positioned in the <u>SWSE</u> of Section <u>10</u>, Township <u>3</u> South, Range <u>2</u> East (the "Well Pad"), <u>Duchesne County</u>, <u>Utah</u>. The surface owner of the Drillsite Location is <u>Dart Homestead Ranch</u>, whose address is <u>Route 2</u>, <u>Box 2044</u>, <u>Roosevelt</u>, <u>UT 84066</u> ("Surface Owner").
- 3. Newfield and the Surface Owner have agreed upon an Easement, Right-of-Way, Surface Use and Damage Agreement dated <u>February 28, 2014</u> covering the Well Pad and access to the Well Pad.

FURTHER AFFIANT SAYETH NOT.

Greg Boggs

ACKNOWLEDGEMENT

STATE OF COLORADO \$
COUNTY OF DENVER \$


Before me, a Notary Public, in and for the State, on this <u>5th</u> day of <u>June</u>, <u>2014</u>, personally appeared <u>Greg Boggs</u>, to me known to be the identical person who executed the foregoing instrument, and acknowledged to me that <u>he</u> executed the same as <u>his</u> own free and voluntary act and deed for the uses and purposes therein set forth.

OTARY PUBLIC

My Commission Expires: |2 |4 |5

CHEMEANE FARIS Notary Public State of Colorado

	STATE OF UTAH		FORM 9				
ı	DEPARTMENT OF NATURAL RESOURCES DIVISION OF OIL, GAS, AND MINING	3	5.LEASE DESIGNATION AND SERIAL NUMBER: Patented				
SUNDR	Y NOTICES AND REPORTS ON	WELLS	6. IF INDIAN, ALLOTTEE OR TRIBE NAME:				
	posals to drill new wells, significantly deep reenter plugged wells, or to drill horizontal n for such proposals.		7.UNIT or CA AGREEMENT NAME:				
1. TYPE OF WELL Oil Well			8. WELL NAME and NUMBER: RANCH 15-10-3-3-2W-MW				
2. NAME OF OPERATOR: NEWFIELD PRODUCTION CO	DMPANY		9. API NUMBER: 43013522960000				
3. ADDRESS OF OPERATOR: 1001 17th Street, Suite 200		NE NUMBER: 3 382-4443 Ext	9. FIELD and POOL or WILDCAT: NORTH MYTON BENCH				
4. LOCATION OF WELL FOOTAGES AT SURFACE: 0368 FSL 2311 FEL			COUNTY: DUCHESNE				
QTR/QTR, SECTION, TOWNSH	IIP, RANGE, MERIDIAN: 0 Township: 03.0S Range: 02.0W Meridian:	U	STATE: UTAH				
11. CHECI	K APPROPRIATE BOXES TO INDICATE N	ATURE OF NOTICE, REPOR	T, OR OTHER DATA				
TYPE OF SUBMISSION		TYPE OF ACTION					
The sundry is beir proposed lined pi attached). The prop drill cuttings from 14-10-3-3-2W-l	CHANGE TO PREVIOUS PLANS CHANGE WELL STATUS DEEPEN OPERATOR CHANGE PRODUCTION START OR RESUME REPERFORATE CURRENT FORMATION TUBING REPAIR	al of expanding the '(revised diagram sufficient capacity of W and Ute Tribal sated at this pad	CASING REPAIR CHANGE WELL NAME CONVERT WELL TYPE NEW CONSTRUCTION PLUG BACK RECOMPLETE DIFFERENT FORMATION TEMPORARY ABANDON WATER DISPOSAL APD EXTENSION OTHER: Pit Enlargement Dill, Gas and Mining August 18, 2014 Date: By:				
NAME (PLEASE PRINT) Matt Barber	PHONE NUMBER 303 382-4493	TITLE Senior Regulatory Specialist	t				
SIGNATURE N/A		DATE 8/12/2014					

BLM - Vernal Field Office - Notification Form

Operator Newfield Exploration R	lig Name/# Pete	Martin Rig #16
Submitted By Kylan Cook	Phone Number	<u>435-790-8236</u>
Well Name/Number Ranch 15-10)-3-3-2W-MW	
Qtr/Qtr SW/SE Section 10 Towns	ship <u>3S</u> Range 2V	
Lease Serial Number Patented	\cap	VEDENTA
API Number 43-013-52296	\mathcal{U}	
<u>Spud Notice</u> – Spud is the initial	spudding of the	well, not drilling
out below a casing string.		
Date/Time <u>08/26/2014</u>	<u>09:30</u> AM ⊠	РМ
<u>Casing</u> – Please report time casing times.	ng run starts, not	cementing
Surface Casing		
Intermediate Casing		
Production Casing		
Liner		
Other		
Date/Time	AM	
BOPE		
Initial BOPE test at surface	casing point	
BOPE test at intermediate of	- •	
30 day BOPE test	, J p	
Other		
Date/Time	AM	
Remarks		

	STATE OF UTAH		FORM 9				
ι	DEPARTMENT OF NATURAL RESOURCES DIVISION OF OIL, GAS, AND MINING	G	5.LEASE DESIGNATION AND SERIAL NUMBER: Patented				
SUNDR	Y NOTICES AND REPORTS ON	I WELLS	6. IF INDIAN, ALLOTTEE OR TRIBE NAME:				
	posals to drill new wells, significantly dee reenter plugged wells, or to drill horizontal n for such proposals.		7.UNIT or CA AGREEMENT NAME:				
1. TYPE OF WELL Oil Well			8. WELL NAME and NUMBER: RANCH 15-10-3-3-2W-MW				
2. NAME OF OPERATOR: NEWFIELD PRODUCTION CO	DMPANY		9. API NUMBER: 43013522960000				
3. ADDRESS OF OPERATOR: Rt 3 Box 3630 , Myton, UT,		ONE NUMBER: xt	9. FIELD and POOL or WILDCAT: NORTH MYTON BENCH				
4. LOCATION OF WELL FOOTAGES AT SURFACE: 0368 FSL 2311 FEL			COUNTY: DUCHESNE				
QTR/QTR, SECTION, TOWNSH	IIP, RANGE, MERIDIAN: 0 Township: 03.0S Range: 02.0W Meridian	ı: U	STATE: UTAH				
11. CHECK	K APPROPRIATE BOXES TO INDICATE N	NATURE OF NOTICE, REPOR	T, OR OTHER DATA				
TYPE OF SUBMISSION		TYPE OF ACTION					
	ACIDIZE	ALTER CASING	CASING REPAIR				
NOTICE OF INTENT Approximate date work will start:	CHANGE TO PREVIOUS PLANS	CHANGE TUBING	CHANGE WELL NAME				
	CHANGE WELL STATUS	COMMINGLE PRODUCING FORMATIONS	CONVERT WELL TYPE				
SUBSEQUENT REPORT Date of Work Completion:	DEEPEN	FRACTURE TREAT	NEW CONSTRUCTION				
	OPERATOR CHANGE	PLUG AND ABANDON	PLUG BACK				
✓ SPUD REPORT	PRODUCTION START OR RESUME	RECLAMATION OF WELL SITE	RECOMPLETE DIFFERENT FORMATION				
Date of Spud:	REPERFORATE CURRENT FORMATION	SIDETRACK TO REPAIR WELL	TEMPORARY ABANDON				
8/27/2014							
DRILLING REPORT	L TUBING REPAIR	VENT OR FLARE	☐ WATER DISPOSAL				
Report Date:	□ WATER SHUTOFF	SI TA STATUS EXTENSION	APD EXTENSION				
	WILDCAT WELL DETERMINATION	OTHER	OTHER:				
Pete Martin Rig #16 GL. Set 20", 52.78# cemented to surfa BLM by e-mail @ 2 08/26/2014. (Spu	completed operations. Clearly show all personal spudded 26" hole on 08/27/2 (0.250" wall), SA53B conductors with Redi Mix. Kylan Cook in 1:30 PM on 08/24/2014 to spuddate pushed back due to rallocation.)	014 and drilled to 60' or pipe at 60' GL and otified UDOGM and ad conductor hole on ain/construction of	epths, volumes, etc. Accepted by the Utah Division of Oil, Gas and Mining FOR RECORD ONLY September 11, 2014				
NAME (PLEASE PRINT) Cherei Neilson	PHONE NUMBER 435 646-4883	TITLE Drilling Techinacian					
SIGNATURE N/A		DATE 9/11/2014					

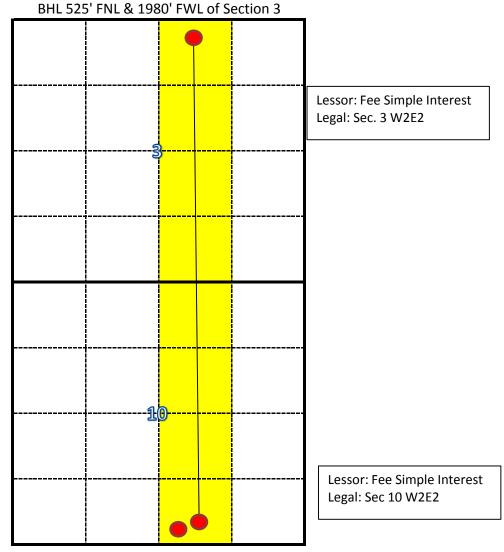
NEWFIEL	D							Cas	ing								Co	nductor
Legal Well Name	A / B //	Δ.							Wellbore N									
Ranch 15-10-3-3-2\ API/UWI	VV-IVI	Surface Le	egal Location					Field	Original Name				Well Typ		We	ell Config	uration T	уре
43013522960000 Well RC			368FSL 23	311FE	L SEC		2W MER State/Provin		TA CB-	WASAT	CH H		Develo	pment	Ho Final Rig Re	orizont		
500378194			uchesne				Utah											
Wellbore																		
Wellbore Name Original Hole										Kick (Off Dept	th (ftKB)						
Section Des Conductor			Size (in)		26	Actual Top	Depth (MD)		Actual Bo	ttom Depth	h (MD) (. ,	27/201	Start Date	0/2	7/2014	End Date	е
					20			0				00 0/	277201	4	10/2	772014	,	
Wellhead Type		Install Date			Service	e		Comme	ent									
		<u> </u>																
Wellhead Compon	ents De:	3				Mal	(e				Model				SN		T wr	P Top (psi)
																		· • • (F • ·)
Casing																		
Casing Description Conductor			Set	Depth (ft	tKB)			60 F	Run Date	8	3/27/2	2014		Set Tensi	on (kips)			
Centralizers									Scratchers		<u> </u>			l				
Casina Campanan	.4-																	
Casing Componer	its			Π			1		П				Т		Mk-up T	q T		
Item Des Conductor Pipe		OD (in) 20	ID (in) 19.500		(lb/ft)	Grade SA53B	Welde	Thread	Jts 2	Len (f	ft) 60.00	Top (ft	(B) 0.0	Btm (ftKB) 60.0	(ft•lb)		Class	Max OD (in)
Jewelry Details		20	19.500		32.76	SASSB	vveide	u			0.00		0.0	00.0				
External Casing Page	acke	r																
Туре	Settir	g Requireme	ent				Release Re	quirements	S				Inflation	Method	Vol Inflatio	n (gal)	Equiv	Hole Sz (in)
Inflation Fluid Type		Infl FI Dens	(lb/gal)	P AV S	Set (psi)	ļ.	V Acting Pre	essure (psi) PICV	Set (psi)		P ICV Ac	t (psi)	ECP Lo	ad (1000lbf)	Se	al Load (1000lbf)
Slotted Liner																		
% Open Area (%)		Perforation N	Min Dimension	n (in)	Perforation	on Max Dime	ension (in)	Axial Perf	Spacing (f	īt)	Perf	Rows	Blank	Top Length (ft)	E	Blank Bot	ttom Lenç	gth (ft)
Slot Description					Slot Pa	attern					I Slot Le	ength (in)	Islot	Width (in)	Slot Freque	ncv	TScreer	Gauge (ga)
					0.0110						Olot Ed	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Joiot	vvidar (iii)	Olot 1 reque		Corcor	Caage (ga)
Liner Hanger Retrievable?	Flasto	mer Type				Fler	nent Center	Denth (ft)		ĪÞ	olish Ro	ore Size (in)			Polish Bore L	enath (fi	r)	
	Lidotoi	ner Type					nent center	Dopar (it)				ore olze (iii,			T OIION BOTC E		, 	
Slip Description										Set Mech	nanics							
Setting Procedure										1								
Unsetting Procedure																		
www.newfield.co	m							Pane	e 1/1						Reno	rt Prir	nted:	9/11/2014

			FORM 9				
	STATE OF UTAH		FORM 9				
	DEPARTMENT OF NATURAL RESOURCE DIVISION OF OIL, GAS, AND MIN		5.LEASE DESIGNATION AND SERIAL NUMBER: Patented				
SUNDR	RY NOTICES AND REPORTS	ON WELLS	6. IF INDIAN, ALLOTTEE OR TRIBE NAME:				
	oposals to drill new wells, significantly reenter plugged wells, or to drill horizon for such proposals.		7.UNIT or CA AGREEMENT NAME:				
1. TYPE OF WELL Oil Well			8. WELL NAME and NUMBER: RANCH 15-10-3-3-2W-UW				
2. NAME OF OPERATOR: NEWFIELD PRODUCTION CO	9. API NUMBER: 43013522960000						
3. ADDRESS OF OPERATOR: 1001 17th Street, Suite 200	00 , Denver, CO, 80202	PHONE NUMBER: 303 382-4443 Ext	9. FIELD and POOL or WILDCAT: NORTH MYTON BENCH				
4. LOCATION OF WELL FOOTAGES AT SURFACE: 0368 FSL 2311 FEL			COUNTY: DUCHESNE				
QTR/QTR, SECTION, TOWNSH	HIP, RANGE, MERIDIAN: 10 Township: 03.0S Range: 02.0W Merio	dian: U	STATE: UTAH				
11. CHEC	K APPROPRIATE BOXES TO INDICAT	E NATURE OF NOTICE, REPOR	RT, OR OTHER DATA				
TYPE OF SUBMISSION		TYPE OF ACTION					
	ACIDIZE	ALTER CASING	CASING REPAIR				
NOTICE OF INTENT Approximate date work will start:	✓ CHANGE TO PREVIOUS PLANS	CHANGE TUBING	CHANGE WELL NAME				
10/31/2014	CHANGE WELL STATUS	COMMINGLE PRODUCING FORMATIONS	CONVERT WELL TYPE				
SUBSEQUENT REPORT	DEEPEN	FRACTURE TREAT	New construction				
Date of Work Completion:	OPERATOR CHANGE	PLUG AND ABANDON	PLUG BACK				
	PRODUCTION START OR RESUME	RECLAMATION OF WELL SITE	RECOMPLETE DIFFERENT FORMATION				
SPUD REPORT Date of Spud:	_						
Date of Spau.	REPERFORATE CURRENT FORMATION	SIDETRACK TO REPAIR WELL	☐ TEMPORARY ABANDON				
	L TUBING REPAIR	VENT OR FLARE	WATER DISPOSAL				
DRILLING REPORT Report Date:	WATER SHUTOFF	SI TA STATUS EXTENSION	APD EXTENSION				
	WILDCAT WELL DETERMINATION	OTHER	OTHER:				
Newfield Producti 15-10-3-3-2W-MV 19,194 ft MD to 9,73 changed to the Ran supplemental info	completed operations. Clearly show a ion Company respectfully red V decrease in drilling depth 23 ft TVD / 18,975 ft MD and nch 15-10-3-3-2W-UW (see a ormation). Surface, Top of P g Production, and Bottom Ho remain the same.	quests that the Ranch s from 9,908 ft TVD / d that the well name be attached for details and roducing Production,	Accepted by the Utah Division of Oil, Gas and Mining FOR RECORD ONLY October 23, 2014				
NAME (PLEASE PRINT) Matt Barber	PHONE NUMB 303 382-4493	ER TITLE Senior Regulatory Specialis	.t				
SIGNATURE N/A		DATE 10/21/2014					

Sundry Number: 56916 API Well Number: 43013522960000 **NEWFIELD EXPLORATION COMPANY** T3S, R2W, U.S.B.&M. Well location, RANCH #15-10-3-3-2W-UW, located as shown in the SW 1/4 SE 1/4 of Section 10, T3S, R2W, U.S.B.&M., Duchesne County, Utah. BASIS OF ELEVATION SPOT ELEVATION LOCATED AT THE SOUTHEAST CORNER OF SECTION 20, T3S, R2W, U.S.B.&M. TAKEN FROM THE MYTON, QUADRANGLE, UTAH, DUCHESNE COUNTY, 7.5 MINUTE QUAD (TOPOGRAPHIC MAP) PUBLISHED BY THE UNITED STATES DEPARTMENT OF THE INTERIOR, GEOLOGICAL SURVEY. SAID ELEVATION IS MARKED AS BEING 5148 FEET. BASIS OF BEARINGS BASIS OF BEARINGS IS A G.P.S. OBSERVATION. S8975'21"W S8976'03"W 1328.73' (Meas. S8978'48"W - 2646.55' (Meas.) 1328.86' (Meas.) Target Bottom Hole 1 1980' 1980 Bottom of 2618.92 Producing Interval W.00.23.07"W SCALE 1313.46' 3 (Meas., 2632.56 2639.37 J.,85,20.00N VOO'06'27"W S89'39'21"W - 2640.59' (Meas.) S89'53'01"W 2636.30' (Meas. NAD 83 (SURFACE LOCATION)

LATITUDE = 4013'49.99" (40.230553)

LONGTUDE = 11005'40.34" (110.094539)


NAD 27 (SURFACE LOCATION)

LATITUDE = 4013'50.14" (40.230594) 5263.40 ATITUDE = 40"15"24.20" (40.256722 ONGITUDE = 110"05"33.73" (110.09270 3,6E,0Q.00N 10 W" 15'51'W Top of Producing N00'05'19"E 1319.91' (Meas.) Formation 1980 RANCH #15-10-3-3-2W-UW 2311' Elev. Ungraded Ground = 5345' - 888 CERTIFICATE S89'50'01"W - 2677.90' (Meas.) Set Marked S89'51'03"W - 2626.02' (Meas.) THIS IS TO CERTIFY THAT THE ABOVE P FIELD NOTES OF ACTUAL SURVEYS MAN SUPERVISION AND THAT THE SAME AN BEST OF MY KNOWLEDGE AND BELIEF REVISED: 04-18-14 REVISED: 12-17-13 REVISED: 11-06-13 @4U35 LINE TABLE LEGEND: LINE DIRECTION LENGTH UINTAH ENGINEERING & LAND SURVEYING = 90° SYMBOL L1 N48"23"22"E 441.29" 85 SOUTH 200 EAST - VERNAL, UTAH 84078 = PROPOSED WELL HEAD. L2 N00°02'41"E 135.01' (435) 789-1017 = SECTION CORNERS LOCATED. SCALE 1" = 1000' DATE SURVEYED: DATE DRAWN: 04-22-13 REFERENCES C.A. R.L.L. S.F. G.L.O. PLAT WEATHER WARM NEWFIELD EXPLORATION COMPANY

Plat depiction including Lease Numbers

Ranch 15-10-3-3-2W-UW

SHL 378' FSL & 2311' FEL of Section 10 Top of Producing Interval 660' FSL & 1980' FWL of Section 10 Bottom of Producing Interval 660' FNL & 1980' FWL of Section 3

Newfield Production Company 15-10-3-3-2W-UW

Surface Hole Location: 368' FSL, 2311' FEL, Section 10, T3S, R2W Bottom Hole Location: 525' FNL, 1980' FEL, Section 3, T3S, R2W **Duchesne County, UT**

Drilling Program

1. **Formation Tops**

Uinta surface Green River 3,737' Garden Gulch 6,591' Uteland Butte Member 8,836' Wasatch 8,969

TVD / 18,975' MD Lateral TD 9.723'

2. Depth to Oil, Gas, Water, or Minerals

Base of moderately saline 2,197' (water) - 8,969' 6,591' Green River (oil) Wasatch 8,969' 9,723' (oil)

3. **Pressure Control**

Section **BOP Description**

Surface Diverter

Intermediate The BOP and related equipment shall meet the minimum requirements of Onshore

Oil and Gas Order No. 2 for equipment and testing requirements, procedures, etc for

a 5M system.

Prod/Prod Liner The BOP and related equipment shall meet the minimum requirements of Onshore

Oil and Gas Order No. 2 for equipment and testing requirements, procedures, etc for

a 5M system.

A 5M BOP system will consist of 2 ram preventers (double or two singles) and an annular preventer (see attached diagram). A choke manifold rated to at least 5,000

psi will be used.

4. Casing

ъ	I	nterval	Weight	G 1		Pore	MW @	Frac	S	afety Factor	·s
Description	Тор	Bottom (TVD/MD)	(ppf)	Grade	Coup	Press @ Shoe	Shoe	Grad @ Shoe	Burst	1,130 2.38 3,090 1.34	Tension
Conductor	0'	60'			Weld						
20	U	00			weld						
Surface	0'	1,656'	54.5	J-55	STC	8.33	8.4	14	2,730	1,130	514,000
13 3/8	U		34.3					14	2.62	2.38	5.70
Intrm Drilling	0'	8,453'	40	11.00	p.m.c	10	10.5	16	5,750	3,090	916,000
9 5/8	U	8,483'	40	N-80	BTC		10.5		1.31	1.34	2.71
Production	01	9,723'	20	D 110	DTC	1.4	14.5	17	12,360	11,080	641,000
5 1/2	0'	18,975'	20	P-110	BTC	14	14.5	17	2.20	1.89	1.69

Assumptions:

Surface casing MASP = (frac gradient + 1.0 ppg) - (gas gradient)

Intermediate casing drilling MASP = 0.5 ppg gas kick with a 70 bbl gain and frac at the shoe with a 1 ppg safety factor

Production casing MASP = (reservoir pressure) - (gas gradient)

Intermediate collapse calculations assume 50% evacuated

Maximum intermediate csg collapse load assumes loss of mud to a fluid level of 4,227'

Intermediate csg run from surface to 8,453' and will not experience full evacuation

Production csg run from surface to TD will isolate intermediate csg from production loads

Production csg withstands burst and collapse loads for anticipated production conditions

Surface & production collapse calcs assume fully evacuated casing w/a gas gradient

All tension calculations assume air weight of casing

Gas gradient = 0.15 psi/ft

All casing shall be new.

All casing strings shall have a minimum of 1 centralizer on each of the bottom 3 joints.

5. Cement

Job	Hole Size	Fill	Slurry Description	ft ³	OH excess	Weight	Yield	
300	Hole Size	FIII	Sturry Description	sacks	OH excess	(ppg)	(ft ³ /sk)	
Conductor	24	60'	Class G w/ 2% KCl + 0.25 lbs/sk Cello Flake	66	15%	15.8	1.17	
Conductor	24	00	Class G W/ 2/0 ICC1 0.25 105/58 CC110 I lake	57	1370	13.0	1.17	
Surface	17 1/2	1,000'	Varicem (Type III) + .125 lbs/sk Cello Flakes	799	15%	11.0	3.33	
Lead	17 1/2	1,000	Variceiii (Type III) + .123 ios/sk Ceiio Fiakes	240	1370	11.0	5.55	
Surface	17 1/2 656'		Vericery (Temp III) + 125 lbs/sl. Calle Elskes	524	15%	13.0	1.9	
Tail			Varicem (Type III) + .125 lbs/sk Cello Flakes	276	13%	13.0	1.9	
Intermediate	12 1/4	6,591'	HLC Premium - 35% Poz/65% Glass G + 10%	2374	15%	11.0	3.53	
Lead	12 1/4	0,391	bentonite	673	13%	11.0	3.33	
Intermediate	12 1/4	1,892'	50/50 Poz/Class G + 1% bentonite	681	15%	14.0	1.29	
Tail	12 1/4	1,892	30/30 POZ/Class G + 1% bentomte	528	13%	14.0	1.29	
Production	9.2/4	1.6211	Floring History 1	450	100/	17.2	1.04	
Lead	8 3/4	1,621'	Elastiseal Unfoamed	245	10%	17.3	1.84	
Production	0.2/4	0.2711		2367	00/	145 172	1.04	
Tail	8 3/4	9,371'	Elastiseal Foamed	1287	0%	14.5 - 17.3	1.84	

The surface casing will be cemented to surface. In the event that cement does not reach surface during the primary cement job, a remedial job will be performed.

Actual cement volumes for the intermediate casing string will be calculated from an open hole caliper log or gauge hole if logs are not ran, plus 15% excess.

The 5.5" production string will be run from surface to TD and cemented to setback. The cement slurries will be adjusted for hole conditions and blend test results. The lateral will be cemented past the setback.

The wellbore will cross the heal setback @ 9,604' MD The first perforation will be within 18,840' MD

Per the directional plan, the bore hole will be drilled 135' past the toe setback for the rat hole and shoe track. This well will not be perforated or produced outside the legal setbacks.

6. Type and Characteristics of Proposed Circulating Medium

<u>Interval</u> <u>Description</u>

Surface - 1,656'

An air and/or fresh water system will be utilized. If an air rig is used, the blooie line discharge may be less than 100' from the wellbore in order to minimize location size. The blooie line is not equipped with an automatic igniter. The air compressor may be located less than 100' from the well bore due to the low possibility of combustion with the air/dust mixture. Water will be on location to be used as kill fluid, if necessary.

1,656' - 8,483'

A water based mud system will be utilized. Hole stability may be improved with additions of KCl or a similar inhibitive substance. In order to control formation pressure the system will be weighted with additions of bentonite, and if conditions warrant, with barite.

Anticipated maximum mud weight is 10.5 ppg.

8,483' - TD One of two possible mud systems may be used depending on offset well performance on ongoing wells:

> water based mud: Hole stability may be improved with additions of KCl or a similar inhibitive substance. In order to control formation pressure the system will be weighted with additions of bentonite, and if conditions warrant, with barite.

Α

A diesel based OBM system: with an oil to water ratio between 70/30 and 80/20. Emulsifiers and wetting agents will be used to maintain adequate mud properties. A water phase salinity will be maintained in the range of 25% using CaCl (Calcium Chloride). All cuttings will be dried and centrifuged so that they can be easily transferred to a lined cuttings pit with little to no free fluid on them. The cuttings will be mixed with fly ash prior to transportation to a location on Newfield owned surface. Once on Newfield owned surface, the cuttings will be treated with the previously approved FIRMUS process and used as a construction material on future location and/or roads on Newfield owned surface. The cuttings may also be transported to a state approved disposal facility.

Anticipated maximum mud weight is 14.5 ppg.

7. Logging, Coring, and Testing

A dual induction, gamma ray, and caliper log may be run from KOP to the base of the Logging:

> surface casing. An azimuthal gamma ray LWD log will be run from the shoe of the intermediate casing to TD. A cement bond log will be run from KOP to the cement top

behind the production casing and or intermediate casing.

Cores: As deemed necessary.

DST: There are no DST's planned for this well.

8. Anticipated Abnormal Pressure or Temperature

Maximum anticipated bottomhole pressure will be approximately equal to total depth (feet) multiplied by a 0.73 psi/ft gradient.

$$9,723' \text{ x} \quad 0.73 \quad psi/ft = 7078.3 \quad psi$$

No abnormal temperature is expected. No H₂S is expected.

9. Other Aspects

The lateral of this well will target the Wasatch formation

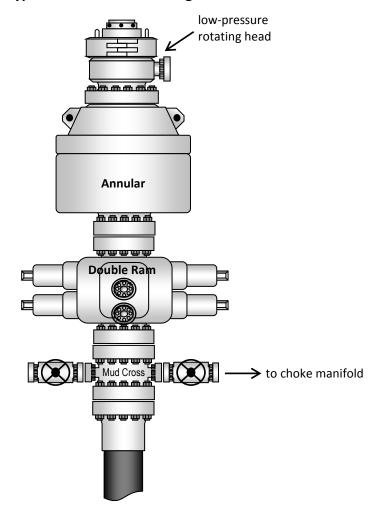
After setting 9-5/8" casing, an 8-3/4" vertical hole will be drilled to a kick off point of

Bircctional tools will then be used to build to

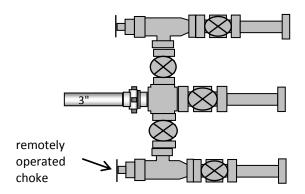
86.81 degrees inclination.

The lateral will be drilled to the bottomhole location shown on the plat. A 5-1/2" longstring will be run from surface to TD and cemented in place.

Newfield requests the following variances from Onshore Order #2:


 Variance from Onshoer Order #2, III.E.1
 Refer to Newfield Production Company Standard Operating Practices "Ute Tribal Green River Development Program" paragraph 9.0

If oil based mud (OBM) is used and If Newfield owns the surface rights on the same drilling site at a location where construction is desired, the cuttings may be used for construction by a Firmus® process at that location. Otherwise, after the cuttings have been made safe for transport as described in paragraph 6, they will be transported to another location on which Newfield owns surface rights and there mixed, as part of a Firmus® process, with at least one additional chemical that will convert them to a temporarily uncured cementitious mixture that will be placed and shaped into a temporary desired final structure that will spontaneously harden within seven days after placement to form the desired structure. Samples of the temporary desired final structure may be taken for testing as described below (after the samples have hardened), or samples of the starting pretreated cuttings and mud will be taken during the construction and later mixed in a laboratory, molded, and cured to simulate the final structure as well as reasonably possible. Either these laboratory-made simulations of the final structure or samples of the temporary mixture itself after hardening, will be mechanically tested directly to determine their unconfined compressive strength and their hydraulic conductivity. Leachates of the mechanically tested structures themselves or of finer particles made by crushing and size-grading of the mechanically tested structures themselves to a specified particle size range will be analyzed, according to specified methods, for their contents of arsenic, barium, cadmium, chromium, lead, mercury, selenium, silver, zinc, benzene, total petroleum hydrocarbons (TPH), and chlorides, and the pH of these leachates will also be measured. The results of all these tests will be reported by Newfield to UDOGM at intervals as requested, along with the latitude and longitude (or other comparable location data) of the site of the useful constructions built.


Water flows in the surface hole are likely. If the water flow is less than 400 bbls/hr, the well will be allowed to flow until the surface casing point is reached and water will be hauled off location. If the water flow is greater than 400 bbls/hr, the water flow will be controlled with kill weight mud which will be maintained until TD. In both situations, the cement density will be adjusted to meet or exceed the mud weight needed to kill the water flow and the well will be shut in once cement is in place. If cement fails to reach the surface or falls back, a top job will be performed to bring cement to surface. Any water flows will be sampled and tested and results will be sent to UDOGM.

A diveter will be used to drill the surface hole interval.

Typical 5M BOP stack configuration

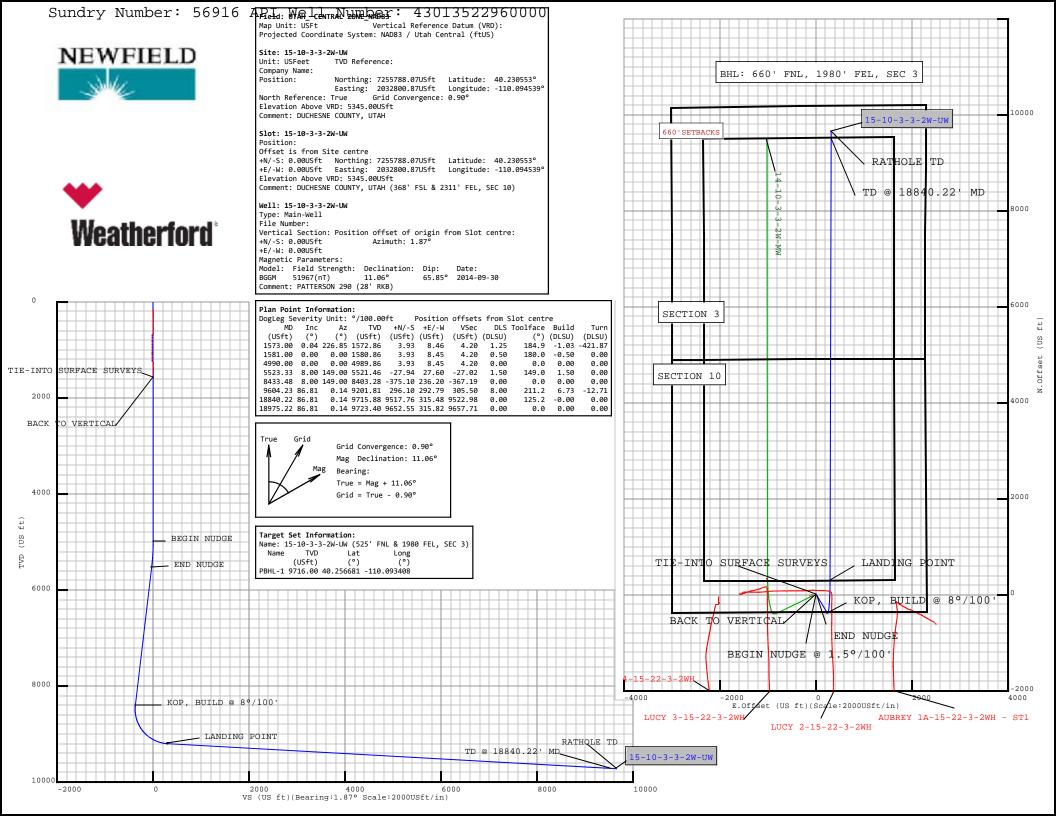
Typical 5M choke manifold configuration

- 1

5D Plan Report

5D Plan Report

Field Name: UTAH_ CENTRAL ZONE_NAD83


Site Name: 15-10-3-3-2W-UW **Well Name:** 15-10-3-3-2W-UW

Plan: PLAN 1

30 September 2014

RECEIVED: Oct. 21, 2014

5D Plan Report

15-10-3-3-2W-UW

Map Units: US ft Company Name:

Vertical Reference Datum (VRD) :

Projected Coordinate System: NAD83 / Utah Central (ftUS)

UTAH_ CENTRAL ZONE NAD83 Comment:

Site Name

Well Name

Units: US ft North Reference: True Convergence Angle: 0.90

 Position
 Northing: 7255788.07 US ft
 Latitude: 40° 13' 49.99"

 Longitude: -110° 5' 40.34"

15-10-3-3-2W-UW **Elevation above VRD**:5345.00 US ft

Comment: DUCHESNE COUNTY, UTAH

Position (Offsets relative to Site Centre)

+N / -S: 0.00 US ft Northing:7255788.07 US ft Latitude: 40°13'49.99"

Slot Name +E / -W: 0.00 US ft Easting:2032800.87 US ft Longitude: -110°5'40.34"

Slot Name +E / -W: 0.00 US ft Easting: 2032800.87 US ft Longitude: -110°5'40.34

Elevation above VRD: 5345.00 US ft

Type: Main well UWI: Plan: PLAN 1

Rig Height Well TVD Reference: 28.00 US ft Comment: PATTERSON 290 (28' RKB)
Relative to VRD: 5373.00 US ft

Closure Distance: 9657.71 US ft Closure Azimuth: 1.87398°

15-10-3-3-2W-UW Vertical Section (Position of Origin Relative to Slot)

+N / -S: 0.00 US ft **+E / -W:** 0.00 US ft **Az:**1.87°

RECEIVED: Oct. 21, 2014

5D Plan Report

Magnetic Parameters

 Model:
 BGGM
 Field Strength:
 51967.1nT
 Dec:
 11.06°
 Dip:
 65.85°
 Date:
 30/Sep/2014

Target Set

Name: 15-10-3-3-2W-UW (525' FNL & 1980 Number of Targets: 1

FEL, SEC 3)

Comment:

TargetName:

PBHL-1

Shape:

Position (Relative to Slot centre)

+N / -S : 9517.75US ft **Northing :** 7265309.61 US ft **Latitude :** 40°15'24.05" **+E / -W :** 315.65 US ft **Easting :** 2032966.93US ft **Longitude :** -110°5'36.27"

TVD (Well TVD Reference): 9716.00 US ft

Cuboid **TVDss :** -4343.00 US ft

Dimensions Length: 1.00 US ft **Breadth**: 1.00 US ft **Height**: 1.00 US ft

Well path created using minimum curvature

			rence)	Well TVD Refe	tre, TVD relative to	elative to Slot cent	Salient Points (Re
E.Offset Latitude Longitude DLS T.Face VS (US ft) (°'") (°'100 US ft) (°) (US ft)		N.Offset (US ft)	TVD (US ft)	Az (°)	Inc (°)	MD (US ft)	Comment
0.00 40°13'49.99" -110°5'40.34" 0.00 0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0.00 40°13'49.99" -110°5'40.34" 0.00 0.00 0.00	0.00	0.00	176.00	0.00	0.00	176.00	
0.08 40°13'49.99" -110°5'40.34" 1.00 66.32 0.04	0.08	0.03	207.00	66.32	0.31	207.00	
0.18 40°13'49.99" -110°5'40.34" 0.70 163.12 0.07	0.18	0.06	236.00	93.26	0.13	236.00	
0.25 40°13'49.99" -110°5'40.34" 0.27 280.64 0.08	0.25	0.08	263.00	66.89	0.16	263.00	
0.33 40°13'49.99" -110°5'40.34" 1.02 305.95 0.19	0.33	0.17	291.00	31.73	0.40	291.00	
0.50 40°13'49.99" -110°5'40.33" 0.94 42.31 0.37	0.50	0.36	319.00	48.30	0.62	319.00	
0.69 40°13'50.00" -110°5'40.33" 1.15 165.00 0.52	0.69	0.50	348.00	64.47	0.31	348.00	
0.87 40°13'50.00" -110°5'40.33" 1.20 327.03 0.66	0.87	0.63	376.00	47.29	0.62	376.00	
1.07 40°13'50.00" -110°5'40.33" 0.63 149.97 0.83	1.07	0.79	402.99	57.53	0.48	403.00	
1.35 40°13'50.00" -110°5'40.32" 1.26 27.37 0.97	1.35	0.93	430.99	69.09	0.81	431.00	
1.72 40°13'50.00" -110°5'40.32" 0.90 152.80 1.08	1.72	1.03	462.99	82.40	0.57	463.00	
2.08 40°13'50.00" -110°5'40.31" 1.20 320.72 1.20	2.08	1.14	492.99	67.33	0.88	493.00	
2.44 40°13'50.00" -110°5'40.31" 1.53 144.84 1.29	2.44	1.21	522.99	94.93	0.57	523.00	
2.85 40°13'50.00" -110°5'40.30" 1.47 4.93 1.26	2.85	1.17	552.98	97.08	1.01	553.00	
3.44 40°13'50.00" -110°5'40.30" 1.85 59.08 1.08	3.44	0.97	582.98	117.27	1.38	583.00	
0.33 40°13'49.99" -110°5'40.34" 1.02 305.95 0.50 40°13'49.99" -110°5'40.33" 0.94 42.31 0.69 40°13'50.00" -110°5'40.33" 1.15 165.00 0.87 40°13'50.00" -110°5'40.33" 1.20 327.03 1.07 40°13'50.00" -110°5'40.33" 0.63 149.97 1.35 40°13'50.00" -110°5'40.32" 1.26 27.37 1.72 40°13'50.00" -110°5'40.32" 0.90 152.80 2.08 40°13'50.00" -110°5'40.31" 1.20 320.72 2.44 40°13'50.00" -110°5'40.31" 1.53 144.84 2.85 40°13'50.00" -110°5'40.30" 1.47 4.93	0.33 0.50 0.69 0.87 1.07 1.35 1.72 2.08 2.44 2.85	0.17 0.36 0.50 0.63 0.79 0.93 1.03 1.14 1.21 1.17	291.00 319.00 348.00 376.00 402.99 430.99 462.99 492.99 522.99 552.98	31.73 48.30 64.47 47.29 57.53 69.09 82.40 67.33 94.93 97.08	0.40 0.62 0.31 0.62 0.48 0.81 0.57 0.88 0.57	291.00 319.00 348.00 376.00 403.00 431.00 463.00 493.00 523.00	

5D Plan Report

Salient Points (Rela	ative to Slot cen	tre, TVD relative to	Well TVD Refe	rence)							
Comment	MD	Inc	Az	TVD	N.Offset	E.Offset	Latitude	Longitude	DLS	T.Face	VS
	(US ft)	(°)	(°)	(US ft)	(US ft)	(US ft)	(° ' '')	(° ' ")	(°/100 US ft)	(°)	(US ft)
	613.00	1.41	125.91	612.97	0.59	4.06	40°13'50.00"	-110°5'40.29"	0.71	86.22	0.72
	643.00	1.36	124.59	642.96	0.17	4.65	40°13'49.99"	-110°5'40.28"	0.20	211.88	0.32
	673.00	1.19	115.71	672.95	-0.17	5.22	40°13'49.99"	-110°5'40.27"	0.87	224.91	0.00
	703.00	1.10	126.17	702.95	-0.47	5.74	40°13'49.99"	-110°5'40.27"	0.76	118.47	-0.29
	733.00	1.01	106.44	732.94	-0.72	6.22	40°13'49.98"	-110°5'40.26"	1.24	246.35	-0.52
	763.00	0.53	122.57	762.94	-0.87	6.59	40°13'49.98"	-110°5'40.26"	1.74	163.62	-0.65
	793.00	0.57	100.68	792.94	-0.97	6.86	40°13'49.98"	-110°5'40.25"	0.71	269.71	-0.75
	823.00	0.40	114.35	822.94	-1.04	7.10	40°13'49.98"	-110°5'40.25"	0.68	152.47	-0.81
	853.00	0.44	127.05	852.93	-1.15	7.29	40°13'49.98"	-110°5'40.25"	0.34	73.18	-0.92
	883.00	0.76	130.72	882.93	-1.35	7.53	40°13'49.98"	-110°5'40.24"	1.07	8.69	-1.11
	913.00	0.62	127.49	912.93	-1.58	7.81	40°13'49.98"	-110°5'40.24"	0.48	193.92	-1.33
	943.00	0.79	120.90	942.93	-1.79	8.12	40°13'49.97"	-110°5'40.24"	0.63	331.18	-1.52
	973.00	0.79	93.04	972.93	-1.90	8.50	40°13'49.97"	-110°5'40.23"	1.27	256.07	-1.63
	1003.00	0.75	79.46	1002.92	-1.88	8.90	40°13'49.97"	-110°5'40.23"	0.62	250.90	-1.59
	1033.00	0.92	85.79	1032.92	-1.83	9.33	40°13'49.97"	-110°5'40.22"	0.64	31.67	-1.52
	1063.00	0.75	67.77	1062.92	-1.73	9.75	40°13'49.97"	-110°5'40.21"	1.04	228.29	-1.41
	1093.00	0.93	74.37	1092.91	-1.59	10.17	40°13'49.98"	-110°5'40.21"	0.68	31.59	-1.26
	1123.00	0.62	85.57	1122.91	-1.52	10.57	40°13'49.98"	-110°5'40.20"	1.15	159.48	-1.17
	1153.00	0.38	54.14	1152.91	-1.45	10.81	40°13'49.98"	-110°5'40.20"	1.19	213.82	-1.09
	1183.00	0.57	12.93	1182.91	-1.24	10.92	40°13'49.98"	-110°5'40.20"	1.26	277.41	-0.88
	1213.00	0.66	7.70	1212.91	-0.92	10.98	40°13'49.98"	-110°5'40.20"	0.35	325.41	-0.57
	1243.00	0.79	349.46	1242.90	-0.55	10.96	40°13'49.99"	-110°5'40.20"	0.88	290.06	-0.19
	1273.00	0.65	336.65	1272.90	-0.19	10.86	40°13'49.99"	-110°5'40.20"	0.71	222.70	0.16
	1303.00	0.79	338.30	1302.90	0.16	10.72	40°13'49.99"	-110°5'40.20"	0.47	9.25	0.51
	1333.00	1.14	327.09	1332.90	0.60	10.48	40°13'50.00"	-110°5'40.21"	1.32	325.98	0.94
	1363.00	1.32	338.34	1362.89	1.17	10.19	40°13'50.00"	-110°5'40.21"	1.00	59.01	1.50
	1393.00	1.45	329.07	1392.88	1.82	9.86	40°13'50.01"	-110°5'40.21"	0.86	295.43	2.14
	1423.00	1.05	325.46	1422.87	2.37	9.51	40°13'50.01"	-110°5'40.22"	1.36	189.34	2.68
	1453.00	1.23	323.22	1452.87	2.86	9.17	40°13'50.02"	-110°5'40.22"	0.62	344.97	3.15
	1483.00	0.92	325.16	1482.86	3.31	8.83	40°13'50.02"	-110°5'40.23"	1.04	174.27	3.60
	1513.00	0.62	319.27	1512.86	3.63	8.59	40°13'50.03"	-110°5'40.23"	1.03	191.85	3.91
	1543.00	0.35	353.41	1542.86	3.85	8.47	40°13'50.03"	-110°5'40.23"	1.28	149.26	4.12
TIE-INTO SURFACE SURVEYS	1573.00	0.04	226.85	1572.86	3.93	8.46	40°13'50.03"	-110°5'40.23"	1.25	184.91	4.20
BACK TO VERTICAL	1581.00	0.00	0.00	1580.86	3.93	8.45	40°13'50.03"	-110°5'40.23"	0.50	180.00	4.20
BEGIN NUDGE @ 1.5°/100'	4990.00	0.00	0.00	4989.86	3.93	8.45	40°13'50.03"	-110°5'40.23"	0.00	0.00	4.20
END NUDGE	5523.33	8.00	149.00	5521.46	-27.94	27.60	40°13'49.71"	-110°5'39.98"	1.50	149.00	-27.02
KOP, BUILD @ 8°/100'	8433.48	8.00	149.00	8403.28	-375.10	236.20	40°13'46.28"	-110°5'37.29"	0.00	0.00	-367.19
LANDING POINT	9604.23	86.81	0.14	9201.81	296.10	292.79	40°13'52.92"	-110°5'36.57"	8.00	211.16	305.50

Weatherford International Limited

5D 7.5.9: 30 September 2014, 16:29:27 UTC

5D Plan Report

Salient Points (Rel	lative to Slot cer	ntre, TVD relative to	Well TVD Re	ference)								
Comment	MD (US ft)	Inc (°)	Az (°)	TVD (US ft)	N.Offset (US ft)		E.Offset (US ft)	Latitude (°'")	Longitude (°'")	DLS (°/100 US ft)	T.Face (°)	VS (US ft)
TD @ 18840.22' MD	18840.22	86.81	0.14	9715.88	9517.76		315.48	40°15'24.05"	-110°5'36.27"	0.00	125.15	9522.98
RATHOLE TD	18975.22	86.81	0.14	9723.40	9652.55		315.82	40°15'25.38"	-110°5'36.27"	0.00	0.00	9657.71
nterpolated Point	s (Relative to S	lot centre, TVD rela	tive to Well T	VD Reference)								
Comment	MD (US ft)	Inc (°)	Az (°)	TVD (US ft)	N.Offset (US ft)	E.Offset (US ft)	Latitude (°''')	Longitud (° ' '')	le DLS (°/100 US f	T.Face t) (°)	VS (US ft)	T.Rate (°/100 US
Jinta Formation :	0.00	0.00	0.00	0.00	0.00	0.00	40°13'49.9	9" -110°5'40	.34" 0.00	0.00	0.00	0.00
	176.00	0.00	0.00	176.00	0.00	0.00	40°13'49.9	9" -110°5'40	.34" 0.00	0.00	0.00	0.00
	207.00	0.31	66.32	207.00	0.03	0.08	40°13'49.9	9" -110°5'40	.34" 1.00	66.32	0.04	0.00
	236.00	0.13	93.26	236.00	0.06	0.18	40°13'49.9	9" -110°5'40	.34" 0.70	163.12	0.07	92.90
	263.00	0.16	66.89	263.00	0.08	0.25	40°13'49.9	9" -110°5'40	.34" 0.27	280.64	0.08	-97.67
	291.00	0.40	31.73	291.00	0.17	0.33	40°13'49.9	9" -110°5'40	.34" 1.02	305.95	0.19	-125.57
	319.00	0.62	48.30	319.00	0.36	0.50	40°13'49.9	9" -110°5'40	.33" 0.94	42.31	0.37	59.18
	348.00	0.31	64.47	348.00	0.50	0.69	40°13'50.0	0" -110°5'40	.33" 1.15	165.00	0.52	55.76
	376.00	0.62	47.29	376.00	0.63	0.87	40°13'50.0	0" -110°5'40	.33" 1.20	327.03	0.66	-61.36
	403.00	0.48	57.53	402.99	0.79	1.07	40°13'50.0	0" -110°5'40	.33" 0.63	149.97	0.83	37.93
	431.00	0.81	69.09	430.99	0.93	1.35	40°13'50.0	0" -110°5'40	.32" 1.26	27.37	0.97	41.29
	463.00	0.57	82.40	462.99	1.03	1.72	40°13'50.0	0" -110°5'40	.32" 0.90	152.80	1.08	41.59
	493.00	0.88	67.33	492.99	1.14	2.08	40°13'50.0	0" -110°5'40	.31" 1.20	320.72	1.20	-50.23
	523.00	0.57	94.93	522.99	1.21	2.44	40°13'50.0	0" -110°5'40	.31" 1.53	144.84	1.29	92.00
	553.00	1.01	97.08	552.98	1.17	2.85	40°13'50.0	0" -110°5'40	.30" 1.47	4.93	1.26	7.17
	583.00	1.38	117.27	582.98	0.97	3.44	40°13'50.0	0" -110°5'40	.30" 1.85	59.08	1.08	67.30
	613.00	1.41	125.91	612.97	0.59	4.06	40°13'50.0	0" -110°5'40	.29" 0.71	86.22	0.72	28.80
	643.00	1.36	124.59	642.96	0.17	4.65	40°13'49.9	9" -110°5'40	.28" 0.20	211.88	0.32	-4.40
	673.00	1.19	115.71	672.95	-0.17	5.22	40°13'49.9	9" -110°5'40	.27" 0.87	224.91	0.00	-29.60
	703.00	1.10	126.17	702.95	-0.47	5.74	40°13'49.9	9" -110°5'40	.27" 0.76	118.47	-0.29	34.87
	733.00	1.01	106.44	732.94	-0.72	6.22	40°13'49.9	8" -110°5'40	.26" 1.24	246.35	-0.52	-65.77
	763.00	0.53	122.57	762.94	-0.87	6.59	40°13'49.9	8" -110°5'40	.26" 1.74	163.62	-0.65	53.77
	793.00	0.57	100.68	792.94	-0.97	6.86	40°13'49.9	8" -110°5'40	.25" 0.71	269.71	-0.75	-72.97
	823.00	0.40	114.35	822.94	-1.04	7.10	40°13'49.9	8" -110°5'40	.25" 0.68	152.47	-0.81	45.57
	853.00	0.44	127.05	852.93	-1.15	7.29	40°13'49.9	8" -110°5'40	.25" 0.34	73.18	-0.92	42.33
	883.00	0.76	130.72	882.93	-1.35	7.53	40°13'49.9	8" -110°5'40	.24" 1.07	8.69	-1.11	12.23
	913.00	0.62	127.49	912.93	-1.58	7.81	40°13'49.9	8" -110°5'40	.24" 0.48	193.92	-1.33	-10.77
	943.00	0.79	120.90	942.93	-1.79	8.12	40°13'49.9	7" -110°5'40	.24" 0.63	331.18	-1.52	-21.97
	973.00	0.79	93.04	972.93	-1.90	8.50	40°13'49.9	7" -110°5'40	.23" 1.27	256.07	-1.63	-92.87
	1003.00	0.75	79.46	1002.92	-1.88	8.90	40°13'49.9	7" -110°5'40	.23" 0.62	250.90	-1.59	-45.27
	1033.00	0.92	85.79	1032.92	-1.83	9.33	40°13'49.9	7" -110°5'40	.22" 0.64	31.67	-1.52	21.10
	1063.00	0.75	67.77	1062.92	-1.73	9.75	40°13'49.9	7" -110°5'40	.21" 1.04	228.29	-1.41	-60.07
	1093.00	0.93	74.37	1092.91	-1.59	10.17	40°13'49.9	8" -110°5'40	.21" 0.68	31.59	-1.26	22.00
	1123.00	0.62	85.57	1122.91	-1.52	10.57	40°13'49.9	8" -110°5'40	.20" 1.15	159.48	-1.17	37.33

5D Plan Report

Interpolated Point	ts (Relative to	Slot centre, TVI	D relative to We	II TVD Reference)							
Comment	MD (US ft)	Inc (°)	Az (°)	TVD (US ft)	N.Offset (US ft)	E.Offset (US ft)	Latitude (°''')	Longitude (°'")	DLS (°/100 US ft)	T.Face (°)	VS (US ft)	T.Rate (°/100 US ft)
	1153.00	0.38	54.14	1152.91	-1.45	10.81	40°13'49.98"	-110°5'40.20"	1.19	213.82	-1.09	-104.77
	1183.00	0.57	12.93	1182.91	-1.24	10.92	40°13'49.98"	-110°5'40.20"	1.26	277.41	-0.88	-137.37
	1213.00	0.66	7.70	1212.91	-0.92	10.98	40°13'49.98"	-110°5'40.20"	0.35	325.41	-0.57	-17.43
	1243.00	0.79	349.46	1242.90	-0.55	10.96	40°13'49.99"	-110°5'40.20"	0.88	290.06	-0.19	-60.80
	1273.00	0.65	336.65	1272.90	-0.19	10.86	40°13'49.99"	-110°5'40.20"	0.71	222.70	0.16	-42.70
	1303.00	0.79	338.30	1302.90	0.16	10.72	40°13'49.99"	-110°5'40.20"	0.47	9.25	0.51	5.50
	1333.00	1.14	327.09	1332.90	0.60	10.48	40°13'50.00"	-110°5'40.21"	1.32	325.98	0.94	-37.37
	1363.00	1.32	338.34	1362.89	1.17	10.19	40°13'50.00"	-110°5'40.21"	1.00	59.01	1.50	37.50
	1393.00	1.45	329.07	1392.88	1.82	9.86	40°13'50.01"	-110°5'40.21"	0.86	295.43	2.14	-30.90
	1423.00	1.05	325.46	1422.87	2.37	9.51	40°13'50.01"	-110°5'40.22"	1.36	189.34	2.68	-12.03
	1453.00	1.23	323.22	1452.87	2.86	9.17	40°13'50.02"	-110°5'40.22"	0.62	344.97	3.15	-7.47
	1483.00	0.92	325.16	1482.86	3.31	8.83	40°13'50.02"	-110°5'40.23"	1.04	174.27	3.60	6.47
	1513.00	0.62	319.27	1512.86	3.63	8.59	40°13'50.03"	-110°5'40.23"	1.03	191.85	3.91	-19.63
	1543.00	0.35	353.41	1542.86	3.85	8.47	40°13'50.03"	-110°5'40.23"	1.28	149.26	4.12	113.80
TIE-INTO SURFACE SURVEYS	1573.00	0.04	226.85	1572.86	3.93	8.46	40°13'50.03"	-110°5'40.23"	1.25	184.91	4.20	-421.87
BACK TO VERTICAL	1581.00	0.00	0.00	1580.86	3.93	8.45	40°13'50.03"	-110°5'40.23"	0.50	180.00	4.20	0.00
	1600.00	0.00	0.00	1599.86	3.93	8.45	40°13'50.03"	-110°5'40.23"	0.00	0.00	4.20	0.00
	1700.00	0.00	0.00	1699.86	3.93	8.45	40°13'50.03"	-110°5'40.23"	0.00	0.00	4.20	0.00
	1800.00	0.00	0.00	1799.86	3.93	8.45	40°13'50.03"	-110°5'40.23"	0.00	0.00	4.20	0.00
	1900.00	0.00	0.00	1899.86	3.93	8.45	40°13'50.03"	-110°5'40.23"	0.00	0.00	4.20	0.00
	2000.00	0.00	0.00	1999.86	3.93	8.45	40°13'50.03"	-110°5'40.23"	0.00	0.00	4.20	0.00
	2100.00	0.00	0.00	2099.86	3.93	8.45	40°13'50.03"	-110°5'40.23"	0.00	0.00	4.20	0.00
Usable Water :	2105.14	0.00	0.00	2105.00	3.93	8.45	40°13'50.03"	-110°5'40.23"	0.00	0.00	4.20	0.00
	2200.00	0.00	0.00	2199.86	3.93	8.45	40°13'50.03"	-110°5'40.23"	0.00	0.00	4.20	0.00
	2300.00	0.00	0.00	2299.86	3.93	8.45	40°13'50.03"	-110°5'40.23"	0.00	0.00	4.20	0.00
	2400.00	0.00	0.00	2399.86	3.93	8.45	40°13'50.03"	-110°5'40.23"	0.00	0.00	4.20	0.00
	2500.00	0.00	0.00	2499.86	3.93	8.45	40°13'50.03"	-110°5'40.23"	0.00	0.00	4.20	0.00
	2600.00	0.00	0.00	2599.86	3.93	8.45	40°13'50.03"	-110°5'40.23"	0.00	0.00	4.20	0.00
	2700.00	0.00	0.00	2699.86	3.93	8.45	40°13'50.03"	-110°5'40.23"	0.00	0.00	4.20	0.00
	2800.00	0.00	0.00	2799.86	3.93	8.45	40°13'50.03"	-110°5'40.23"	0.00	0.00	4.20	0.00
	2900.00	0.00	0.00	2899.86	3.93	8.45	40°13'50.03"	-110°5'40.23"	0.00	0.00	4.20	0.00
	3000.00	0.00	0.00	2999.86	3.93	8.45	40°13'50.03"	-110°5'40.23"	0.00	0.00	4.20	0.00
	3100.00	0.00	0.00	3099.86	3.93	8.45	40°13'50.03"	-110°5'40.23"	0.00	0.00	4.20	0.00
	3200.00	0.00	0.00	3199.86	3.93	8.45	40°13'50.03"	-110°5'40.23"	0.00	0.00	4.20	0.00
	3300.00	0.00	0.00	3299.86	3.93	8.45	40°13'50.03"	-110°5'40.23"	0.00	0.00	4.20	0.00
	3400.00	0.00	0.00	3399.86	3.93	8.45	40°13'50.03"	-110°5'40.23"	0.00	0.00	4.20	0.00
	3500.00	0.00	0.00	3499.86	3.93	8.45	40°13'50.03"	-110°5'40.23"	0.00	0.00	4.20	0.00
	3600.00	0.00	0.00	3599.86	3.93	8.45	40°13'50.03"	-110°5'40.23"	0.00	0.00	4.20	0.00
	3700.00	0.00	0.00	3699.86	3.93	8.45	40°13'50.03"	-110°5'40.23"	0.00	0.00	4.20	0.00

Weatherford International Limited

5D 7.5.9: 30 September 2014, 16:29:27 UTC

5D Plan Report

				II TVD Reference		= 0%			810		1/0	
Comment	MD (US ft)	Inc (°)	Az (°)	TVD (US ft)	N.Offset (US ft)	E.Offset (US ft)	Latitude (° ' '')	Longitude (°'")	DLS (°/100 US ft)	T.Face (°)	VS (US ft)	T.Rate (°/100 US fi
Green River Formation :	3739.14	0.00	0.00	3739.00	3.93	8.45	40°13'50.03"	-110°5'40.23"	0.00	0.00	4.20	0.00
	3800.00	0.00	0.00	3799.86	3.93	8.45	40°13'50.03"	-110°5'40.23"	0.00	0.00	4.20	0.00
	3900.00	0.00	0.00	3899.86	3.93	8.45	40°13'50.03"	-110°5'40.23"	0.00	0.00	4.20	0.00
	4000.00	0.00	0.00	3999.86	3.93	8.45	40°13'50.03"	-110°5'40.23"	0.00	0.00	4.20	0.00
	4100.00	0.00	0.00	4099.86	3.93	8.45	40°13'50.03"	-110°5'40.23"	0.00	0.00	4.20	0.00
	4200.00	0.00	0.00	4199.86	3.93	8.45	40°13'50.03"	-110°5'40.23"	0.00	0.00	4.20	0.00
	4300.00	0.00	0.00	4299.86	3.93	8.45	40°13'50.03"	-110°5'40.23"	0.00	0.00	4.20	0.00
	4400.00	0.00	0.00	4399.86	3.93	8.45	40°13'50.03"	-110°5'40.23"	0.00	0.00	4.20	0.00
	4500.00	0.00	0.00	4499.86	3.93	8.45	40°13'50.03"	-110°5'40.23"	0.00	0.00	4.20	0.00
	4600.00	0.00	0.00	4599.86	3.93	8.45	40°13'50.03"	-110°5'40.23"	0.00	0.00	4.20	0.00
	4700.00	0.00	0.00	4699.86	3.93	8.45	40°13'50.03"	-110°5'40.23"	0.00	0.00	4.20	0.00
	4800.00	0.00	0.00	4799.86	3.93	8.45	40°13'50.03"	-110°5'40.23"	0.00	0.00	4.20	0.00
	4900.00	0.00	0.00	4899.86	3.93	8.45	40°13'50.03"	-110°5'40.23"	0.00	0.00	4.20	0.00
EGIN NUDGE @ 1.5°/100'	4990.00	0.00	0.00	4989.86	3.93	8.45	40°13'50.03"	-110°5'40.23"	0.00	0.00	4.20	0.00
	5000.00	0.15	149.00	4999.86	3.92	8.46	40°13'50.03"	-110°5'40.23"	1.50	149.00	4.19	0.00
	5100.00	1.65	149.00	5099.84	2.57	9.27	40°13'50.02"	-110°5'40.22"	1.50	0.00	2.87	0.00
	5200.00	3.15	149.00	5199.75	-1.02	11.43	40°13'49.98"	-110°5'40.19"	1.50	0.00	-0.65	0.00
	5300.00	4.65	149.00	5299.52	-6.85	14.93	40°13'49.92"	-110°5'40.15"	1.50	0.00	-6.36	-0.00
	5400.00	6.15	149.00	5399.07	-14.92	19.78	40°13'49.84"	-110°5'40.09"	1.50	0.00	-14.26	0.00
	5500.00	7.65	149.00	5498.34	-25.21	25.96	40°13'49.74"	-110°5'40.01"	1.50	0.00	-24.35	0.00
END NUDGE	5523.33	8.00	149.00	5521.46	-27.94	27.60	40°13'49.71"	-110°5'39.98"	1.50	0.00	-27.02	0.00
	5600.00	8.00	149.00	5597.38	-37.08	33.10	40°13'49.62"	-110°5'39.91"	0.00	0.00	-35.98	0.00
	5700.00	8.00	149.00	5696.41	-49.01	40.26	40°13'49.51"	-110°5'39.82"	0.00	0.00	-47.67	0.00
ahogany Bench :	5727.34	8.00	149.00	5723.48	-52.27	42.22	40°13'49.47"	-110°5'39.80"	0.00	0.00	-50.87	0.00
	5800.00	8.00	149.00	5795.43	-60.94	47.43	40°13'49.39"	-110°5'39.73"	0.00	0.00	-59.36	0.00
	5900.00	8.00	149.00	5894.46	-72.87	54.60	40°13'49.27"	-110°5'39.64"	0.00	0.00	-71.05	0.00
	6000.00	8.00	149.00	5993.49	-84.80	61.77	40°13'49.15"	-110°5'39.54"	0.00	0.00	-82.74	0.00
	6100.00	8.00	149.00	6092.51	-96.73	68.94	40°13'49.03"	-110°5'39.45"	0.00	0.00	-94.43	0.00
	6200.00	8.00	149.00	6191.54	-108.66	76.10	40°13'48.92"	-110°5'39.36"	0.00	0.00	-106.12	0.00
	6300.00	8.00	149.00	6290.57	-120.59	83.27	40°13'48.80"	-110°5'39.27"	0.00	0.00	-117.81	0.00
	6400.00	8.00	149.00	6389.59	-132.52	90.44	40°13'48.68"	-110°5'39.17"	0.00	0.00	-129.50	0.00
	6500.00	8.00	149.00	6488.62	-144.45	97.61	40°13'48.56"	-110°5'39.08"	0.00	0.00	-141.19	0.00
	6600.00	8.00	149.00	6587.65	-156.38	104.78	40°13'48.45"	-110°5'38.99"	0.00	0.00	-152.87	0.00
	6700.00	8.00	149.00	6686.68	-168.31	111.94	40°13'48.33"	-110°5'38.90"	0.00	0.00	-164.56	0.00
	6800.00	8.00	149.00	6785.70	-180.24	119.11	40°13'48.21"	-110°5'38.80"	0.00	0.00	-176.25	0.00
	6900.00	8.00	149.00	6884.73	-192.17	126.28	40°13'48.09"	-110°5'38.71"	0.00	0.00	-187.94	0.00
	7000.00	8.00	149.00	6983.76	-204.09	133.45	40°13'47.97"	-110°5'38.62"	0.00	0.00	-199.63	0.00
	7100.00	8.00	149.00	7082.78	-216.02	140.61	40°13'47.86"	-110°5'38.53"	0.00	0.00	-211.32	0.00
	7200.00	8.00	149.00	7181.81	-227.95	147.78	40°13'47.74"	-110°5'38.43"	0.00	0.00	-223.01	0.00

Weatherford International Limited

5D 7.5.9: 30 September 2014, 16:29:27 UTC

5D Plan Report

Interpolated Poin	nts (Relative to	Slot centre, TVI	O relative to We	II TVD Reference)							
Comment	MD (US ft)	Inc (°)	Az (°)	TVD (US ft)	N.Offset (US ft)	E.Offset (US ft)	Latitude (°'")	Longitude (° ' '')	DLS (°/100 US ft)	T.Face (°)	VS (US ft)	T.Rate (°/100 US ft)
	7300.00	8.00	149.00	7280.84	-239.88	154.95	40°13'47.62"	-110°5'38.34"	0.00	0.00	-234.70	0.00
	7400.00	8.00	149.00	7379.86	-251.81	162.12	40°13'47.50"	-110°5'38.25"	0.00	0.00	-246.39	0.00
	7500.00	8.00	149.00	7478.89	-263.74	169.29	40°13'47.38"	-110°5'38.16"	0.00	0.00	-258.08	0.00
	7600.00	8.00	149.00	7577.92	-275.67	176.45	40°13'47.27"	-110°5'38.07"	0.00	0.00	-269.77	0.00
	7700.00	8.00	149.00	7676.94	-287.60	183.62	40°13'47.15"	-110°5'37.97"	0.00	0.00	-281.46	0.00
Douglas Creek Member :	7729.50	8.00	149.00	7706.15	-291.12	185.74	40°13'47.11"	-110°5'37.95"	0.00	0.00	-284.90	0.00
	7800.00	8.00	149.00	7775.97	-299.53	190.79	40°13'47.03"	-110°5'37.88"	0.00	0.00	-293.14	0.00
	7900.00	8.00	149.00	7875.00	-311.46	197.96	40°13'46.91"	-110°5'37.79"	0.00	0.00	-304.83	0.00
	8000.00	8.00	149.00	7974.02	-323.39	205.13	40°13'46.79"	-110°5'37.70"	0.00	0.00	-316.52	0.00
	8100.00	8.00	149.00	8073.05	-335.32	212.29	40°13'46.68"	-110°5'37.60"	0.00	0.00	-328.21	0.00
	8200.00	8.00	149.00	8172.08	-347.25	219.46	40°13'46.56"	-110°5'37.51"	0.00	0.00	-339.90	0.00
	8300.00	8.00	149.00	8271.10	-359.18	226.63	40°13'46.44"	-110°5'37.42"	0.00	0.00	-351.59	0.00
	8400.00	8.00	149.00	8370.13	-371.11	233.80	40°13'46.32"	-110°5'37.33"	0.00	0.00	-363.28	0.00
Lower Black Shale :	8433.19	8.00	149.00	8403.00	-375.07	236.18	40°13'46.28"	-110°5'37.30"	0.00	0.00	-367.16	0.00
KOP, BUILD @ 8°/100'	8433.48	8.00	149.00	8403.28	-375.10	236.20	40°13'46.28"	-110°5'37.29"	0.00	0.00	-367.19	0.00
	8500.00	4.41	110.34	8469.43	-379.96	240.98	40°13'46.24"	-110°5'37.23"	8.00	211.16	-371.89	-58.12
Castle Peak Limestone :	8556.10	5.07	54.30	8525.37	-379.26	245.02	40°13'46.24"	-110°5'37.18"	8.00	249.63	-371.06	-99.88
	8600.00	7.67	32.35	8569.00	-375.65	248.16	40°13'46.28"	-110°5'37.14"	8.00	305.50	-367.36	-50.01
	8700.00	15.03	15.51	8667.00	-357.50	255.21	40°13'46.46"	-110°5'37.05"	8.00	327.33	-348.98	-16.84
CP LIMES :	8708.11	15.65	14.84	8674.82	-355.43	255.77	40°13'46.48"	-110°5'37.04"	8.00	343.88	-346.89	-8.23
	8800.00	22.82	9.79	8761.53	-325.84	261.98	40°13'46.77"	-110°5'36.96"	8.00	344.52	-317.12	-5.50
Uteland Butte :	8867.10	28.11	7.68	8822.09	-297.33	266.31	40°13'47.05"	-110°5'36.91"	8.00	349.30	-288.48	-3.15
	8900.00	30.72	6.89	8850.75	-281.30	268.35	40°13'47.21"	-110°5'36.88"	8.00	351.21	-272.40	-2.39
	9000.00	38.65	5.09	8932.91	-224.75	274.20	40°13'47.77"	-110°5'36.80"	8.00	351.90	-215.68	-1.80
Wasatch :	9038.61	41.72	4.55	8962.40	-199.93	276.29	40°13'48.01"	-110°5'36.78"	8.00	353.38	-190.81	-1.39
	9100.00	46.60	3.82	9006.43	-157.29	279.40	40°13'48.44"	-110°5'36.74"	8.00	353.79	-148.09	-1.19
	9200.00	54.57	2.85	9069.87	-80.22	283.86	40°13'49.20"	-110°5'36.68"	8.00	354.31	-70.91	-0.97
	9300.00	62.54	2.06	9122.00	4.95	287.48	40°13'50.04"	-110°5'36.63"	8.00	354.93	14.33	-0.79
	9400.00	70.52	1.37	9161.80	96.56	290.21	40°13'50.95"	-110°5'36.60"	8.00	355.35	105.98	-0.69
	9500.00	78.49	0.75	9188.49	192.83	291.99	40°13'51.90"	-110°5'36.58"	8.00	355.62	202.25	-0.62
	9600.00	86.47	0.16	9201.56	291.89	292.77	40°13'52.88"	-110°5'36.57"	8.00	355.79	301.28	-0.59
LANDING POINT	9604.23	86.81	0.14	9201.81	296.10	292.79	40°13'52.92"	-110°5'36.57"	8.00	355.86	305.50	-0.58
Wasatch 11 Target :	9604.30	86.81	0.14	9201.81	296.18	292.79	40°13'52.92"	-110°5'36.57"	0.00	0.00	305.57	0.00
	9700.00	86.81	0.14	9207.14	391.73	293.02	40°13'53.86"	-110°5'36.56"	0.00	0.00	401.08	0.00
	9800.00	86.81	0.14	9212.70	491.57	293.26	40°13'54.85"	-110°5'36.56"	0.00	0.00	500.88	0.00
Wasatch 12:	9892.16	86.81	0.14	9217.83	583.59	293.49	40°13'55.76"	-110°5'36.56"	0.00	0.00	592.86	0.00
	9900.00	86.81	0.14	9218.27	591.42	293.51	40°13'55.84"	-110°5'36.56"	0.00	0.00	600.68	0.00
	10000.00	86.81	0.14	9223.83	691.26	293.75	40°13'56.82"	-110°5'36.55"	0.00	0.00	700.48	0.00

Weatherford International Limited

5D 7.5.9: 30 September 2014, 16:29:27 UTC

5D Plan Report

Interpolated Po	ints (Relative to	Slot centre, TVD	relative to We	ell TVD Reference)							
Comment	MD (US ft)	Inc (°)	Az (°)	TVD (US ft)	N.Offset (US ft)	E.Offset (US ft)	Latitude (°''')	Longitude (°'")	DLS (°/100 US ft)	T.Face (°)	VS (US ft)	T.Rate (°/100 US ft)
	10100.00	86.81	0.14	9229.40	791.11	294.00	40°13'57.81"	-110°5'36.55"	0.00	0.00	800.28	0.00
	10200.00	86.81	0.14	9234.96	890.95	294.24	40°13'58.80"	-110°5'36.55"	0.00	0.00	900.08	0.00
	10300.00	86.81	0.14	9240.53	990.80	294.48	40°13'59.78"	-110°5'36.54"	0.00	0.00	999.88	0.00
	10400.00	86.81	0.14	9246.09	1090.64	294.73	40°14'0.77"	-110°5'36.54"	0.00	0.00	1099.68	0.00
	10500.00	86.81	0.14	9251.66	1190.49	294.97	40°14'1.76"	-110°5'36.54"	0.00	0.00	1199.48	0.00
	10600.00	86.81	0.14	9257.22	1290.33	295.22	40°14'2.74"	-110°5'36.53"	0.00	0.00	1299.28	0.00
	10700.00	86.81	0.14	9262.79	1390.18	295.46	40°14'3.73"	-110°5'36.53"	0.00	0.00	1399.08	0.00
	10800.00	86.81	0.14	9268.35	1490.02	295.71	40°14'4.72"	-110°5'36.53"	0.00	0.00	1498.88	0.00
	10900.00	86.81	0.14	9273.92	1589.87	295.95	40°14'5.70"	-110°5'36.52"	0.00	0.00	1598.68	0.00
	11000.00	86.81	0.14	9279.48	1689.71	296.19	40°14'6.69"	-110°5'36.52"	0.00	0.00	1698.48	0.00
	11100.00	86.81	0.14	9285.05	1789.56	296.44	40°14'7.68"	-110°5'36.52"	0.00	0.00	1798.28	0.00
	11200.00	86.81	0.14	9290.61	1889.40	296.68	40°14'8.66"	-110°5'36.51"	0.00	0.00	1898.08	0.00
	11300.00	86.81	0.14	9296.18	1989.25	296.93	40°14'9.65"	-110°5'36.51"	0.00	0.00	1997.88	0.00
	11400.00	86.81	0.14	9301.74	2089.09	297.17	40°14'10.64"	-110°5'36.51"	0.00	0.00	2097.68	0.00
	11500.00	86.81	0.14	9307.31	2188.94	297.42	40°14'11.62"	-110°5'36.51"	0.00	0.00	2197.48	0.00
	11600.00	86.81	0.14	9312.87	2288.78	297.66	40°14'12.61"	-110°5'36.50"	0.00	0.00	2297.27	0.00
	11700.00	86.81	0.14	9318.44	2388.62	297.91	40°14'13.60"	-110°5'36.50"	0.00	0.00	2397.07	0.00
	11800.00	86.81	0.14	9324.00	2488.47	298.15	40°14'14.58"	-110°5'36.50"	0.00	0.00	2496.87	0.00
	11900.00	86.81	0.14	9329.57	2588.31	298.40	40°14'15.57"	-110°5'36.49"	0.00	0.00	2596.67	0.00
	12000.00	86.81	0.14	9335.13	2688.16	298.64	40°14'16.56"	-110°5'36.49"	0.00	0.00	2696.47	0.00
	12100.00	86.81	0.14	9340.70	2788.00	298.89	40°14'17.54"	-110°5'36.49"	0.00	0.00	2796.27	0.00
	12200.00	86.81	0.14	9346.26	2887.85	299.13	40°14'18.53"	-110°5'36.48"	0.00	0.00	2896.07	0.00
	12300.00	86.81	0.14	9351.83	2987.69	299.38	40°14'19.52"	-110°5'36.48"	0.00	0.00	2995.87	0.00
	12400.00	86.81	0.14	9357.40	3087.54	299.62	40°14'20.50"	-110°5'36.48"	0.00	0.00	3095.67	0.00
	12500.00	86.81	0.14	9362.96	3187.38	299.87	40°14'21.49"	-110°5'36.47"	0.00	0.00	3195.47	0.00
	12600.00	86.81	0.14	9368.53	3287.23	300.11	40°14'22.48"	-110°5'36.47"	0.00	0.00	3295.27	0.00
	12700.00	86.81	0.14	9374.09	3387.07	300.36	40°14'23.46"	-110°5'36.47"	0.00	0.00	3395.07	0.00
	12800.00	86.81	0.14	9379.66	3486.92	300.60	40°14'24.45"	-110°5'36.46"	0.00	0.00	3494.87	0.00
	12900.00	86.81	0.14	9385.22	3586.76	300.85	40°14'25.44"	-110°5'36.46"	0.00	0.00	3594.67	0.00
	13000.00	86.81	0.14	9390.79	3686.61	301.09	40°14'26.42"	-110°5'36.46"	0.00	0.00	3694.47	0.00
	13100.00	86.81	0.14	9396.35	3786.45	301.34	40°14'27.41"	-110°5'36.45"	0.00	0.00	3794.27	0.00
	13200.00	86.81	0.14	9401.92	3886.30	301.58	40°14'28.40"	-110°5'36.45"	0.00	0.00	3894.07	0.00
	13300.00	86.81	0.14	9407.49	3986.14	301.83	40°14'29.38"	-110°5'36.45"	0.00	0.00	3993.87	0.00
	13400.00	86.81	0.14	9413.05	4085.98	302.07	40°14'30.37"	-110°5'36.44"	0.00	0.00	4093.67	0.00
	13500.00	86.81	0.14	9418.62	4185.83	302.32	40°14'31.36"	-110°5'36.44"	0.00	0.00	4193.47	0.00
	13600.00	86.81	0.14	9424.18	4285.67	302.57	40°14'32.34"	-110°5'36.44"	0.00	0.00	4293.27	0.00
	13700.00	86.81	0.14	9429.75	4385.52	302.81	40°14'33.33"	-110°5'36.44"	0.00	0.00	4393.06	0.00
	13800.00	86.81	0.14	9435.32	4485.36	303.06	40°14'34.32"	-110°5'36.43"	0.00	0.00	4492.86	0.00
	13900.00	86.81	0.14	9440.88	4585.21	303.30	40°14'35.30"	-110°5'36.43"	0.00	0.00	4592.66	0.00
	14000.00	86.81	0.14	9446.45	4685.05	303.55	40°14'36.29"	-110°5'36.43"	0.00	0.00	4692.46	0.00
	14100.00	86.81	0.14	9452.01	4784.90	303.79	40°14'37.28"	-110°5'36.42"	0.00	0.00	4792.26	0.00

Weatherford International Limited 5D 7.5.9: 30 September 2014, 16:29:27 UTC

RECEIVED: Oct. 21, 2014

5D Plan Report

Interpolated Points	s (Relative to Slot	centre, TVD	relative to	Well TVD Reference)								
Comment	MD (US ft)	Inc (°)	Az (°)	TVD (US ft)	N.Offset (US ft)	E.Offset (US ft)	Latitude (° ' '')	Longitude (°'")	DLS (°/100 US ft)	T.Face (°)	VS (US ft)	T.Rate (°/100 US ft)
	14200.00	86.81	0.14	9457.58	4884.74	304.04	40°14'38.27"	-110°5'36.42"	0.00	0.00	4892.06	0.00
	14300.00	86.81	0.14	9463.15	4984.59	304.28	40°14'39.25"	-110°5'36.42"	0.00	0.00	4991.86	0.00
	14400.00	86.81	0.14	9468.71	5084.43	304.53	40°14'40.24"	-110°5'36.41"	0.00	0.00	5091.66	0.00
	14500.00	86.81	0.14	9474.28	5184.28	304.78	40°14'41.23"	-110°5'36.41"	0.00	0.00	5191.46	0.00
	14600.00	86.81	0.14	9479.84	5284.12	305.02	40°14'42.21"	-110°5'36.41"	0.00	0.00	5291.26	0.00
	14700.00	86.81	0.14	9485.41	5383.97	305.27	40°14'43.20"	-110°5'36.40"	0.00	0.00	5391.06	0.00
	14800.00	86.81	0.14	9490.98	5483.81	305.51	40°14'44.19"	-110°5'36.40"	0.00	0.00	5490.86	0.00
	14900.00	86.81	0.14	9496.54	5583.66	305.76	40°14'45.17"	-110°5'36.40"	0.00	0.00	5590.66	0.00
	15000.00	86.81	0.14	9502.11	5683.50	306.01	40°14'46.16"	-110°5'36.39"	0.00	0.00	5690.46	0.00
	15100.00	86.81	0.14	9507.67	5783.34	306.25	40°14'47.15"	-110°5'36.39"	0.00	0.00	5790.26	0.00
	15200.00	86.81	0.14	9513.24	5883.19	306.50	40°14'48.13"	-110°5'36.39"	0.00	0.00	5890.06	0.00
	15300.00	86.81	0.14	9518.81	5983.03	306.74	40°14'49.12"	-110°5'36.38"	0.00	0.00	5989.86	0.00
	15400.00	86.81	0.14	9524.37	6082.88	306.99	40°14'50.11"	-110°5'36.38"	0.00	0.00	6089.66	0.00
	15500.00	86.81	0.14	9529.94	6182.72	307.24	40°14'51.09"	-110°5'36.38"	0.00	0.00	6189.46	0.00
Wasatch 15 Base :	15516.74	86.81	0.14	9530.87	6199.43	307.28	40°14'51.26"	-110°5'36.38"	0.00	0.00	6206.16	0.00
	15600.00	86.81	0.14	9535.51	6282.57	307.48	40°14'52.08"	-110°5'36.37"	0.00	0.00	6289.26	0.00
	15700.00	86.81	0.14	9541.07	6382.41	307.73	40°14'53.07"	-110°5'36.37"	0.00	0.00	6389.06	0.00
	15800.00	86.81	0.14	9546.64	6482.26	307.98	40°14'54.05"	-110°5'36.37"	0.00	0.00	6488.85	0.00
	15900.00	86.81	0.14	9552.20	6582.10	308.22	40°14'55.04"	-110°5'36.37"	0.00	0.00	6588.65	0.00
	16000.00	86.81	0.14	9557.77	6681.95	308.47	40°14'56.03"	-110°5'36.36"	0.00	0.00	6688.45	0.00
	16100.00	86.81	0.14	9563.34	6781.79	308.72	40°14'57.01"	-110°5'36.36"	0.00	0.00	6788.25	0.00
	16200.00	86.81	0.14	9568.90	6881.64	308.96	40°14'58.00"	-110°5'36.36"	0.00	0.00	6888.05	0.00
	16300.00	86.81	0.14	9574.47	6981.48	309.21	40°14'58.99"	-110°5'36.35"	0.00	0.00	6987.85	0.00
	16400.00	86.81	0.14	9580.04	7081.32	309.46	40°14'59.97"	-110°5'36.35"	0.00	0.00	7087.65	0.00
	16500.00	86.81	0.14	9585.60	7181.17	309.70	40°15'0.96"	-110°5'36.35"	0.00	0.00	7187.45	0.00
	16600.00	86.81	0.14	9591.17	7281.01	309.95	40°15'1.95"	-110°5'36.34"	0.00	0.00	7287.25	0.00
	16700.00	86.81	0.14	9596.74	7380.86	310.20	40°15'2.93"	-110°5'36.34"	0.00	0.00	7387.05	0.00
	16800.00	86.81	0.14	9602.30	7480.70	310.44	40°15'3.92"	-110°5'36.34"	0.00	0.00	7486.85	0.00
	16900.00	86.81	0.14	9607.87	7580.55	310.69	40°15'4.91"	-110°5'36.33"	0.00	0.00	7586.65	0.00
	17000.00	86.81	0.14	9613.44	7680.39	310.94	40°15'5.89"	-110°5'36.33"	0.00	0.00	7686.45	0.00
	17100.00	86.81	0.14	9619.00	7780.24	311.18	40°15'6.88"	-110°5'36.33"	0.00	0.00	7786.25	0.00
Wasatch 18:	17108.31	86.81	0.14	9619.47	7788.54	311.20	40°15'6.96"	-110°5'36.33"	0.00	0.00	7794.54	0.00
	17200.00	86.81	0.14	9624.57	7880.08	311.43	40°15'7.87"	-110°5'36.32"	0.00	0.00	7886.05	0.00
	17300.00	86.81	0.14	9630.14	7979.93	311.68	40°15'8.85"	-110°5'36.32"	0.00	0.00	7985.85	0.00
	17400.00	86.81	0.14	9635.70	8079.77	311.92	40°15'9.84"	-110°5'36.32"	0.00	0.00	8085.65	0.00
	17500.00	86.81	0.14	9641.27	8179.62	312.17	40°15'10.83"	-110°5'36.31"	0.00	0.00	8185.45	0.00
	17600.00	86.81	0.14	9646.84	8279.46	312.42	40°15'11.81"	-110°5'36.31"	0.00	0.00	8285.25	0.00
	17700.00	86.81	0.14	9652.41	8379.30	312.66	40°15'12.80"	-110°5'36.31"	0.00	0.00	8385.05	0.00
	17800.00	86.81	0.14	9657.97	8479.15	312.91	40°15'13.79"	-110°5'36.30"	0.00	0.00	8484.84	0.00
	17900.00	86.81	0.14	9663.54	8578.99	313.16	40°15'14.77"	-110°5'36.30"	0.00	0.00	8584.64	0.00

Weatherford International Limited 5D 7.5.9: 30 September 2014, 16:29:27 UTC

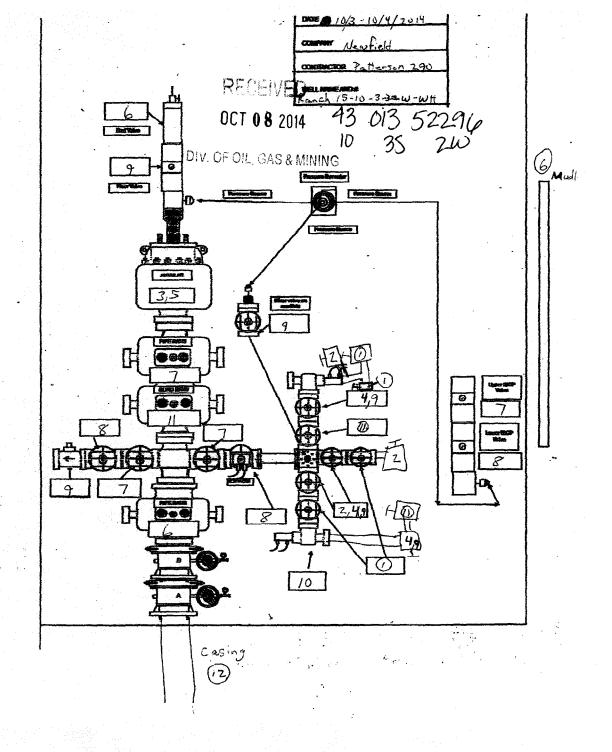
RECEIVED: Oct. 21, 2014

5D Plan Report

Interpolated Poir	nts (Relative to	Slot centre, TVD	relative to We	ell TVD Reference)							
Comment	MD (US ft)	Inc (°)	Az (°)	TVD (US ft)	N.Offset (US ft)	E.Offset (US ft)	Latitude (°''')	Longitude (° ' '')	DLS (°/100 US ft)	T.Face (°)	VS (US ft)	T.Rate (°/100 US ft)
	18000.00	86.81	0.14	9669.11	8678.84	313.41	40°15'15.76"	-110°5'36.30"	0.00	0.00	8684.44	0.00
	18100.00	86.81	0.14	9674.67	8778.68	313.65	40°15'16.75"	-110°5'36.29"	0.00	0.00	8784.24	0.00
	18200.00	86.81	0.14	9680.24	8878.53	313.90	40°15'17.73"	-110°5'36.29"	0.00	0.00	8884.04	0.00
	18300.00	86.81	0.14	9685.81	8978.37	314.15	40°15'18.72"	-110°5'36.29"	0.00	0.00	8983.84	0.00
	18400.00	86.81	0.14	9691.37	9078.22	314.40	40°15'19.71"	-110°5'36.29"	0.00	0.00	9083.64	0.00
	18500.00	86.81	0.14	9696.94	9178.06	314.64	40°15'20.69"	-110°5'36.28"	0.00	0.00	9183.44	0.00
	18600.00	86.81	0.14	9702.51	9277.91	314.89	40°15'21.68"	-110°5'36.28"	0.00	0.00	9283.24	0.00
	18700.00	86.81	0.14	9708.08	9377.75	315.14	40°15'22.67"	-110°5'36.28"	0.00	0.00	9383.04	0.00
	18800.00	86.81	0.14	9713.64	9477.60	315.39	40°15'23.65"	-110°5'36.27"	0.00	0.00	9482.84	0.00
TD @ 18840.22' MD	18840.22	86.81	0.14	9715.88	9517.76	315.48	40°15'24.05"	-110°5'36.27"	0.00	0.00	9522.98	0.00
	18900.00	86.81	0.14	9719.21	9577.44	315.63	40°15'24.64"	-110°5'36.27"	0.00	0.00	9582.64	0.00
RATHOLE TD	18975.22	86.81	0.14	9723.40	9652.55	315.82	40°15'25.38"	-110°5'36.27"	0.00	0.00	9657.71	0.00

ation Points (Relative to Slot centre,				
Name	MD (US ft)	TVD (US ft)	N.Offset (US ft)	E.Offset (US ft)
Uinta Formation	0.00	0.00	0.00	0.00
Usable Water	2105.14	2105.00	3.93	8.45
Green River Formation	3739.14	3739.00	3.93	8.45
Mahogany Bench	5727.34	5723.48	-52.27	42.22
Douglas Creek Member	7729.50	7706.15	-291.12	185.74
Lower Black Shale	8433.19	8403.00	-375.07	236.18
Castle Peak Limestone	8556.10	8525.37	-379.26	245.02
CP LIMES	8708.11	8674.82	-355.43	255.77
Uteland Butte	8867.10	8822.09	-297.33	266.31
Wasatch	9038.61	8962.40	-199.93	276.29
Wasatch 11 Target	9604.30	9201.81	296.18	292.79
Wasatch 12	9892.16	9217.83	583.59	293.49
Wasatch 15 Base	15516.74	9530.87	6199.43	307.28
Wasatch 18	17108.31	9619.47	7788.54	311.20

Weatherford International Limited 5D 7.5.9: 30 September 2014, 16:29:27 UTC


RECEIVED: Oct. 21, 2014

BLM - Vernal Field Office - Notification Form

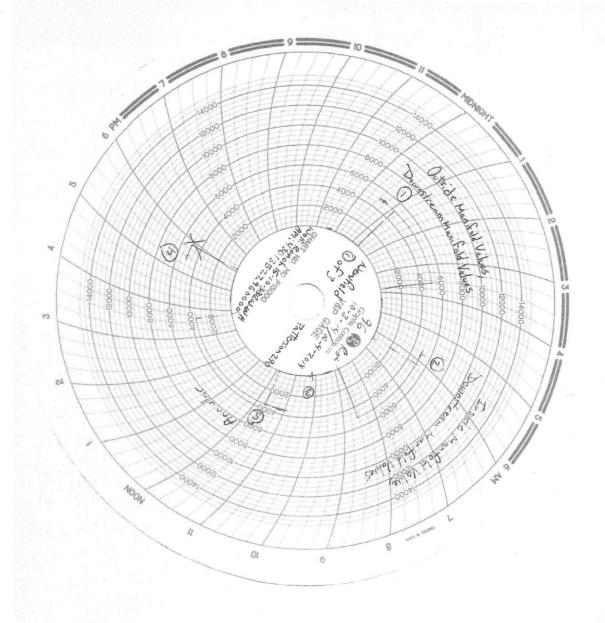
Submitted By Mike Woolsey & Jared Bouzek Phone Number 307-212-4856 Well Name/Number Ranch 15-10-3-3-2W-MW Qtr/Qtr SW/SE Section 10 Township 3S Range 2W Lease Serial Number Patented API Number 43013522960000
<u>Spud Notice</u> – Spud is the initial spudding of the well, not drilling out below a casing string.
Date/Time AM
Casing — Please report time casing run starts, not cementing times. ☐ Surface Casing ☐ Intermediate Casing ☐ Production Casing ☐ Liner ☐ Other
Date/Time <u>10-12-14</u> <u>6:00</u> AM ⊠ PM □
BOPE Initial BOPE test at surface casing point BOPE test at intermediate casing point 30 day BOPE test Other
Date/Time AM

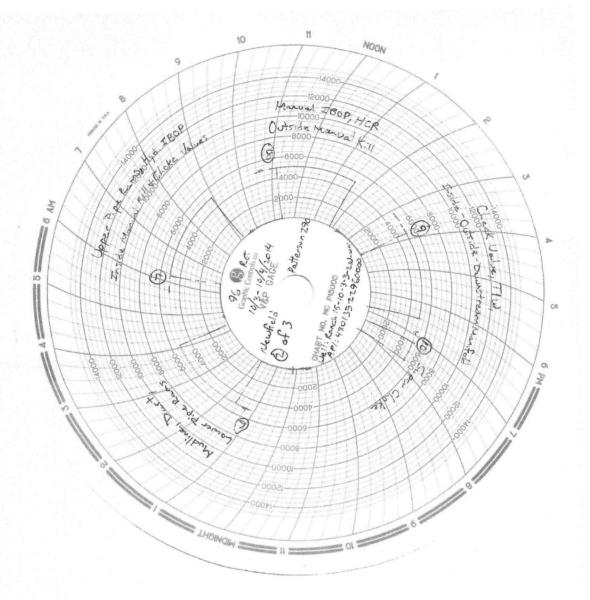
Remarks <u>We will Be Running Intermediate Casing on the Ranch</u> 15-10-3-3-2W-UW Between 10-12-14 to 10-13-14

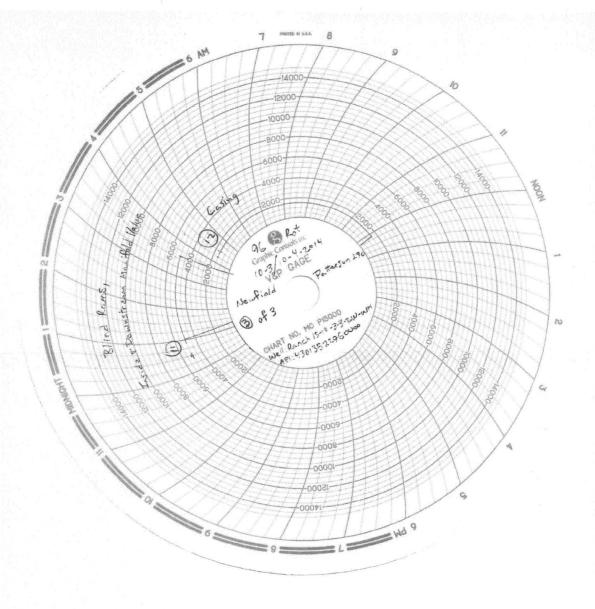
DATE: 10/3-10/4/2014	ACCUMULATOR FUNC	TION TEST
WELL: Rench 15-10-3-3-2W-4	J#	
TO CHECK THE USA	NBLE FLUID STORED IN TH	E NITROGEN BOTTLES ON THE
ACC	CUMULATOR (OO #Z III.A.	Z.c.i. or ii or iii)
1. Make sure all roms a	and annular are open and if a	applicable HCR is closed
2. Ensure accumulator	is pumped up to working pre	essure! (Shut off all pumps)
3. Open HCR valve. (if a	applicable)	
4. Close annular.		
Close all pipe rams.		
Open one set of pipe	roms to simulate closing the	e blind rams.
7. If you have a 3 Ram	stack open the annular to a	chieve the 50 +/- % safety
factor for	5M and greater systems.	· ·
8. Accumulator pressu	re should be 200 psi over pre	charge pressure
(Accumulo	rtor working pressure (1,500	psi = 750 desired psi)
(2,000 and	1 3,000 psi = 1,000 desired ps	i)).
9. RECORD THE REMAINING PRESS	TURE 1,350	PSI
if ann	ular is closed, open it at this	time and close HCR.
TO CHECK THE CA	PACITY OF THE ACCUMU	LATOR PUMPS (00 #2 (I).A.2.f.)
Shut the accum	ulator bottles or spherical (I:	solate them from the pumps &
manifold) o	pen the bleed off value to the	e tank (Manifold psi should
	go to zero psi) clase bl	eed valve.
1. Open the HCR valve	e. (If applicable)	
Close annular.		
With pumps only, to	ime how long it takes to re-	gain manifold presssure to
200 psi o	ver desired precharge pressu	re! (Accumulator working
pressure	(1,500 psi = 750 psi desired p	osi) (2,000 and 3,000 psi = 1,000
desired p	si)).	•
4. RECORD ELAPSED THME	(m: 1500	PSI (2 minutes or less)

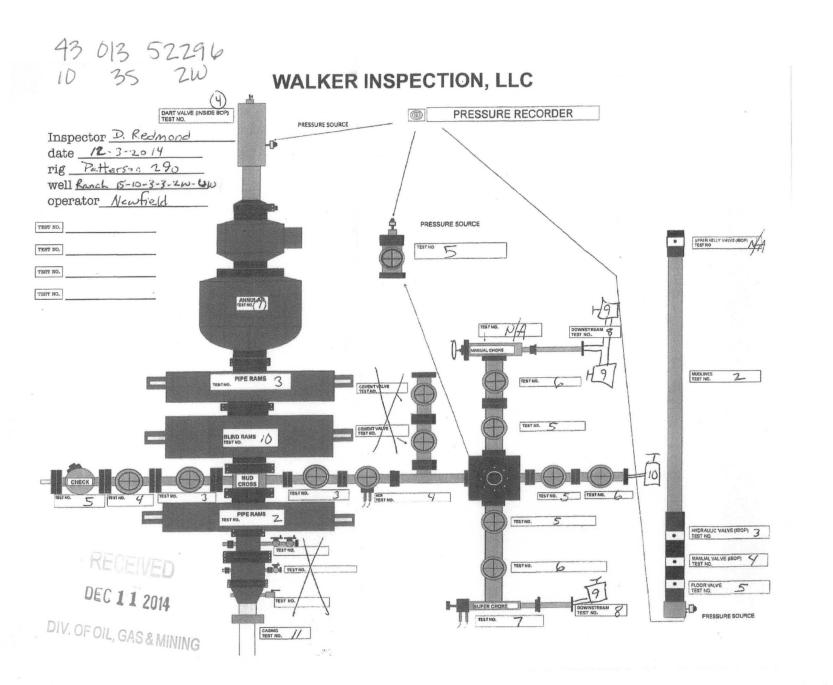
TO CHECK THE PRECHARGE ON THE BOTTLES OR SPHERICAL (OO #2 III.A.2.d.)

Open bottles back up to the manifold (pressure should be above the desired precharge
pressure (1,500 psi = 750 psi desired psi) (2,000 and 3,000 psi = 1,000 desired
psi)] may need to use pumps to pressure back up.

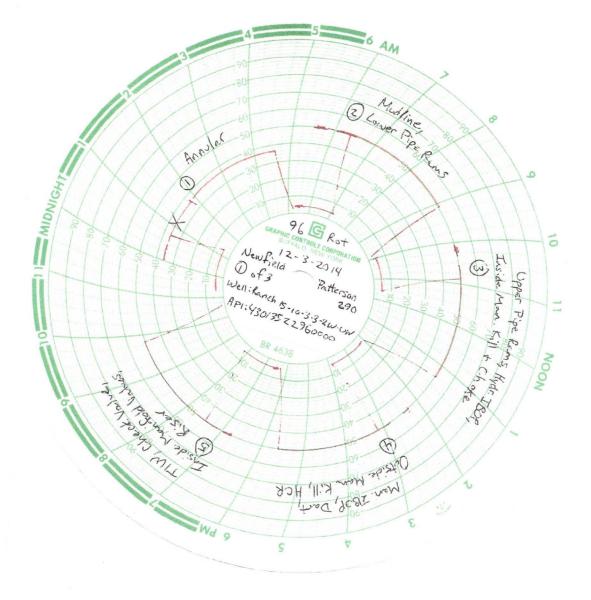

with a guage.


- 2. With power to pumps shut off open bleed line to tank.
- 3. Watch and record where the pressure drops (Accumulator psi).

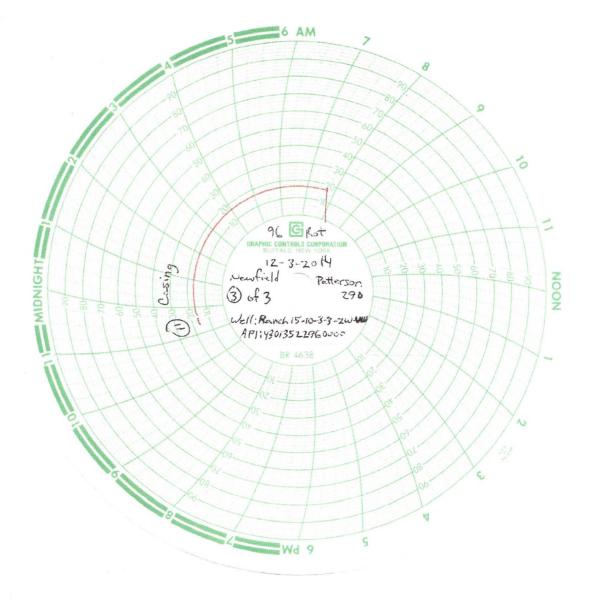

4. RECORD THE PRESSURE DROP	950	PSI
If pressure drops below MININ	IUM precharge	(Accumulator working pressure (1,500 psi = 700 psi
minimum) (2,000 and 3,000 p.	si = 900 psi mini	mum)) each bottle shall be independently checked


DATE:	/3	PANYE NEW	field ma Patt	erson 290	WELL NAME & RANCH IS	-10-332W-WH
Tie	ne	Test No.				Result:
6:37	АМ ФРИМ	1	Outside Manit	Eld Values, Dan	astream Manfold Values	Pass AFail 🗆
7:13	AM DPMD	2	Inside Manifold	Value, Downst	eam Manifold Values	Pass pFail □
9:21	AM oPMig	3	Annular		·	Pass ⊡Fail d
\$21.5	AM KPMO	4	Inside Mani-	old Value, out.	side Manifold Value, Do	nstre Pass of all in
7:53	AM ppMo	5	Annular	· ·		Pass of Fail
4:39	AM ØPMO	6	Mudline, C.	ower Pipe K	Cams, Dart	Pass xiFail
5:12	AM MPMD	7	Jeper Pipe R	ams, Toside Ma	walkill + Choke Walves, Hy	dr. IBop Pass XIFall 1
5137	AM ÉPMO	8		Outside Manual	•	Pass ofail o
6:16	AM popMi	9.	Check Value, R	liser, Inside r	Outside + Downstram M	an fold Pass perail o
6:42	АМ фРМо	10	Super Choke			Pass of all o
7:30	AM JOPMO	11	Blind Rums, Ins.	dert Danuktream	Manfald Valve	Pass pirali 🗆
8:22	AM ØPMC	12	Casing			Pass pFail o
	AM oPMc	13				Pass oFail o
	AM oPMc	14			•	Pass oFail o
	AM oPMo	Retest				Pass ofail o
	AM @PMC	Retest				Pass ofail o
	AM OPMO	Retest				Pass oFail o
	AM OPMO	Retest		· · · · · · · · · · · · · · · · · · ·		Pass ofail c
	AM opMo	Retest	 		***************************************	Pass oFail c
	AM ::PM	Retest	 			Pass oFail c
	AM ciPMi	Retest		*************************************		Pass oFail c
Acc. Tan	k Size (inche:) /	W	D	L) ÷ 231=	gal

BOOK Springs, WY (307) 342-3350
BOP TESTING, CASING TESTING, LEAK OFF TESTING, &
INTEGRITY TESTING
NIPPLE UP CREWS, NITROGEN CHARGING SERVICE



WALKER INSPECTION, LLC


Accumulator Function Test Lease #Ranch 15-10-3-3-2W Operator New Field Rig Name & # Patterson 290 _____Location_ Inspector Dustin Redmond Date __ /2-3-25/9 TO CHECK THE USABLE FLUID STORED IN THE NITROGEN BOTTLES ON THE ACCUMULATOR (O.S.O. #2 section, III.A.2.c.i. or ii or iii) 1. Make sure all rams and annular are open and if applicable HCR is closed. 2. Ensure accumulator is pumped up to working pressure! (Shut off all pumps) 3. Open HCR Valve. (if applicable) 4. Close annular. 5. Close all pipe rams. 6. Open one set of pipe rams to simulate closing the blind ram. 7. If you have a 3 ram stack, open the annular to achieve the 50=% safety factor for 5M and greater systems. 8. Accumulator pressure should be 200 psi above the desired pre-charge pressure, (Accumulator working pressure {1500psi = 750 desired psi} { 2000 and 3000 psi = 1000 desired psi} 9. Record the remaining pressure ___ 1,500 If annular is closed, open it a this time and close the HCR. TO CHECK THE PRECHARGE ON BOTTLES OR SPHERICAL (O.S.O. #2 section III.A.2.d) 1. The manifold pre-charge pressure should be above the desired pre-charge pressure, {1500 psi = 750 desired psi} {2000 and 3000 psi = 1000 desired psi} may need to use pumps to pressure back up. 2. With power to pump shut off open bleed line to the tank. 3. Watch and record where the pressure drops, (accumulator psi). 950 Record the pressure drop __ If the pressure drops below the MINIMUM pre-charge, (Accumulator working pressure {1500 psi = 700 min.} {2000 and 3000psi = 1900psi min.}, each bottle shall be independently checked with a gauge and recharged with nitrogen to the desired pre-charge pressure. (Accumulator working pressure {1500psi = 750 desired psi) { 2000 and 3000 psi = 1000 desired psi). TO CHECK THE CAPACITY OF THE ACCUMULATOR PUMPS (O.S.O. #2 section III.A.2.f.) Shut the accumulator bottles or spherical, (isolate them from the pumps & manifold) open the bleed off valve to the tank, (manifold psi should go to O psi) close bleed valve. 1. Open the HCR valve, (if applicable). 2. Close annular. 3. With pumps only, time how long it takes to regain manifold pressure to 200 psi over desired pre-charge pressure! (Accumulator working pressure {1500psi = 750 desired psi} { 2000 and 3000 psi = 1000 desired psi}. min 3 sec 4. Record elapsed time_ . (2 minutes or less) Open bottles or spherical back up and turn pumps on.

DATE:/	2-3-/4 com	PANY: Ne	which rig: Petterson 290 WELLNAME & #: 15-10-3-3	-ZW-UW
TI	ME	TEST NO.		RESULTS
4:50	AMK PMD	1	Annular	PASS FAIL
5:19	AME PM	2	Midline, lower Pipe Rams	PASSE FAIL
5:46	AMA PMD	3	Upper Pipe Rums, Hydr. IBOP, Inside Hen Kill & Chake	PASSE FAIL
6:02	AMX PMo	4	Man. IBOP, Outside Man. Kill, HCR, Dort	PASSE FAIL
6:45	AMA PMD	5	TIW, Check Valve, Inside Manifold Values, River	PASSIX FAIL
7:08	AMR PMO	6	Outside Manifold Values	PASSKI FAIL
7:27	AM/CPMD	7	Superchoke	PASSE FAIL
7:33	AMK PMo	8	Discostrein you fold Values	PASS FAILO
7:53	AMX PMO	9	Downstream Manifold Values	PASS FAIL
8:18	AMX PM□	10	Blind Rams, Downstream Manifold Value	PASSE FAIL
9:56	AM© PM□	11	Casing	PASSEXFAILD
	AMO PMO	12		PASS FAIL
	AMD PMD	13		PASSO FAILO
	AMO PMO	14		PASSO FAILO
	AMO PMO	RETEST	-	PASSO FAILO
	AMo PMo	RETEST		PASSO FAILO
	AMo PMo	RETEST		PASSI FAILII
	AMO PMO	RETEST		PASS FAIL
	AMa PMa	RETEST		PASSO FAILO
	AMa PMa	RETEST		PASSO FAILO
	AMO PMO	RETEST		PASSO FAILO

WALKER INSPECTION, LLC

1473

WALKER INSPECTION, LLC. REBEL TESTING • EAGER BEAVER TESTERS WYOMING • COLORADO • NORTH DAKOTA

Daily JSA/Observation Report

OPERATOR: Newfield	DATE: 12-2-2014 + 12-3-2014
LOCATION: Ranch 15-10-3-3-2W-UW	CONTRACTOR: Patterson Z90
EMPLOYEE NAME: Dustin Redmond	
High Pressure Testing	COMMENTS: Safe working habits
Working Below Platform	
Requires PPE	
Overhead Work is Occurring	
Fill in if: Confined Spaces are Involved	
Fill in if: Set up of Containment	
Using Rig Hoist to Lift Tools	
Fill in if: Other:	
SIGNATURE: 1/2/201	DATE: 13-3-2014
WALKER INSPECTION, LLC. AND AFFILIATES	
ATTENDANCE:	
The sprain	
0 - 8 - 11	
TOTAL OF	
(A. Care	
2000-	
•	
Observation	on Report
EMPLOYEE REPORTING: Desta Bedmond	SIGNATURE: DAMAN
Was job set up and performed correctly and to best of companies	ability?
Was all safety equipment used correctly by all involved?	(V) N
Any incidents or near misses to report about WI?	Y (10)
Any incidents or near misses to report in general?	Y/(N)
Any spills or environemental issues to report?	YM
Basic Comments:	

CONFIDENTIAL

BLM - Vernal Field Office - Notification Form

Submitted By Alvin Nielsen & Bill Snapp Phone Number 307-212-4856 Well Name/Number Ranch 15-10-3-3-2W-UW Qtr/Qtr SW/SE Section 10 Township 3S Range 2W Lease Serial Number Patented API Number 43013522960000
<u>Spud Notice</u> – Spud is the initial spudding of the well, not drilling out below a casing string.
Date/Time AM
Casing — Please report time casing run starts, not cementing times. ☐ Surface Casing ☐ Intermediate Casing ☐ Production Casing ☐ Liner ☐ Other
Date/Time <u>12/18/2014</u>
BOPE Initial BOPE test at surface casing point BOPE test at intermediate casing point 30 day BOPE test Other
Date/Time AM

Remarks Patterson# 290 should run 5.5" casing on 12/18/2014 @ 13:00 on the Ranch 15-10-3-3-2W-UW

	STATE OF UTAH			FORM 9
1	DEPARTMENT OF NATURAL RESC DIVISION OF OIL, GAS, AND		i	5.LEASE DESIGNATION AND SERIAL NUMBER: Patented
SUNDR	RY NOTICES AND REPOR	TS ON	WELLS	6. IF INDIAN, ALLOTTEE OR TRIBE NAME:
	oposals to drill new wells, significa reenter plugged wells, or to drill ho n for such proposals.			7.UNIT or CA AGREEMENT NAME:
1. TYPE OF WELL Oil Well				8. WELL NAME and NUMBER: RANCH 15-10-3-3-2W-UW
2. NAME OF OPERATOR: NEWFIELD PRODUCTION CO	DMPANY			9. API NUMBER: 43013522960000
3. ADDRESS OF OPERATOR: 1001 17th Street, Suite 200	00 , Denver, CO, 80202		NE NUMBER: 3 382-4443 Ext	9. FIELD and POOL or WILDCAT: NORTH MYTON BENCH
4. LOCATION OF WELL FOOTAGES AT SURFACE: 0368 FSL 2311 FEL				COUNTY: DUCHESNE
QTR/QTR, SECTION, TOWNSH Qtr/Qtr: SWSE Section: 1	HIP, RANGE, MERIDIAN: 10 Township: 03.0S Range: 02.0W	Meridian:	U	STATE: UTAH
11. CHEC	K APPROPRIATE BOXES TO IND	ICATE NA	ATURE OF NOTICE, REPOR	RT, OR OTHER DATA
TYPE OF SUBMISSION			TYPE OF ACTION	
	CHANGE TO PREVIOUS PLANS CHANGE WELL STATUS DEEPEN OPERATOR CHANGE PRODUCTION START OR RESUME REPERFORATE CURRENT FORMATION TUBING REPAIR WATER SHUTOFF WILDCAT WELL DETERMINATION COMPLETED OPERATIONS. Clearly see attached FIRMUS Process	☐ C ☐ F ☐ P ☐ R ☐ S ☐ v ☐ s ✓ o		CASING REPAIR CHANGE WELL NAME CONVERT WELL TYPE NEW CONSTRUCTION PLUG BACK RECOMPLETE DIFFERENT FORMATION TEMPORARY ABANDON WATER DISPOSAL APD EXTENSION OTHER: FIRMUS Construction Materia Pepths, volumes, etc. Accepted by the Utah Division of Oil, Gas and Mining FOR RECORD ONLY January 27, 2015
NAME (PLEASE PRINT)	PHONE N	UMBER	TITLE	
Melissa Luke SIGNATURE	303 323-9769		Regulatory Technician DATE	
N/A			1/27/2015	

RECEIVED: Jan. 27, 2015

Firmus® Process Subsequent Sundry Notice:

This Subsequent Sundry Notice is being submitted to report that the drill pad at the Ranch 15-10-3-3-2W-UW/Ute Tribal 14-10-3-3-2W-MW location was constructed predominantly from oil base drilling cuttings that had been generated during earlier drilling at the locations listed below. After the drilling at those earlier-drilled locations, the cuttings were prestabilized, and a total of 3600 Loose Cubic Yards (LCY) of these prestabilized drill cuttings from the locations listed below were assembled at the Ranch 15-10-3-3-2W-UW/Ute Tribal 14-10-3-3-2W-MW location, where they were consolidated by a Firmus® process into the drilling pad for that location. Attached is the Firmus® Process Post Job Report for your review and records.

The previously drilled locations from which pre-stabilized drilling cuttings were taken and the amounts taken from each location were: (1). Ranch 16-10-3-3-2WH/Aubrey 1A-15-22-3-2WH (API # 43013521720000/ 43013522700000): 2040 LCY; (2). Jorgensen 2-4-9-3-2WH (API # 43013521070000): 900 LCY; (3) Perank 13-10-3-3-3WH (API # 43013518910000): 660 LCY.

July 28, 2014

Dart Homestead Ranch, Inc. c/o Bruce Dart, President Route 2, Box 2044 Roosevelt, UT 84066

Newfield Exploration Company

1001 17th Street | Suite 2000 Denver, Colorado 80202 PH 303-893-0102 | FAX 303-893-0103

RE:

Oil Based Mud Cuttings Section 10: S2SW, SWSE Township 3 South, Range 2 West Duchesne County, Utah

Dear Mr. Dart,

Newfield Production Company ("Newfield") is preparing to construct the access roads and drillsite locations for the Ute Tribal 13-10-3-3-2WH, Ranch 15-10-3-3-2WH, and Ute Tribal 14-10-3-3-2WH on your property. Newfield requests your permission to use treated oil based mud cuttings in the construction process of the aforementioned access roads and drillsite locations. Oil based mud is often used in the drilling process, but once drilling is completed, the oil based mud cuttings are dried and treated to render them harmless and usable for the drillsite construction and access roads.

In the application process, a six (6) inch layer of the treated oil based mud cuttings will be mixed what an additional curing agent and distributed over the natural ground, and/or a subgrade of the drillsite location, and will spontaneously harden to serve as the base layer of the drillsite location. Lastly, a two to three (2-3) inch layer of gravel will be laid over the top of the treated and hardened oil based mud cuttings to complete the construction process. The benefits of using the treated oil based mud cuttings include decreased maintenance from weather related erosion and vastly improved dust control compared to standard building materials. Furthermore, the process is environmentally friendly.

If the foregoing meets your approval, please sign in the space provided and return to Newfield Production Company, 1001 17th St, Suite 2000, Denver, CO 80202, Attn: Shane Gillespie.

If you have any questions, I can be reached at (303) 383-4197.

My Regards,

Shane Gillespie Sr. Landman

Newfield Exploration Company

AGREED to and ACCEPTED this 14 day of august, 2014.

By: Bruce Dart, President

FIRMUS® POST JOB REPORT

WELL NAME: Firmus® Location: FC2853-UT Ranch 15(14)-10-3-3-2W-UW(MW)

AFE #: 43291D and 43292D REPORT DATE: 01/06/15

START DATE: <u>08/16/14</u> COMPLETION DATE: <u>08/26/14</u> SCOTT QUOTE #: <u>FC2853-UT</u>

COUNTY: <u>Duchesne</u> LATITUDE: <u>40.2180556° N</u> LONGITUDE: <u>110.0946389° W</u>

JOB SUMMARY:

Drill cuttings were pre-stabilized on the following wells either during drilling or after drilling was completed.

Well Name	AFE#	Sampling Date	Volume
Ranch 16-10-3-3-2WH/	41985D	8/2/2014	2040 LCY
Aubrey 1A-15-22-3-2WH	41569D	0/2/2014	2040 LC 1
Jorgensen 2-4-9-3-2WH	26582D	4/11/2014	900 LCY
Perank 13-10-3-3-3WH	42049D	4/10/2014	660 LCY

A total of 3600 Loose Cubic Yards (LCY) of pre-stabilized construction material was placed on a 430' x 335' area of lease pad, excluding a 80' x 80' pit area to form the drill pad at the Ranch 15(14)-10-3-3-2W-UW(MW).

Analytical testing was performed on the cuttings from the generating locations. Confirmatory sampling and testing was performed on the receiving site. Confirmatory samples are taken on every 1,000 Compacted Cubic Yards (CCY) of pre-stabilized cuttings. Four grab samples are taken from each 1,000 CCY and composited for testing. All confirmatory Leachate and Geotechnical results fall within acceptable levels.

Enclosed

Confirmatory Leachate Summary page 2
Confirmatory Geotechnical Summary page 2
Initial Analytical Summary page 3

Firmus® Location: FC2853-UT Ranch 15(14)-10-3-3-2W-UW(MW)

CONFIRMATORY TEST SUMMARY

		Leachate Summary						
	Sample A	Sample B	Sample C					
Benzene (mg/kg)	<0.00100	<0.00100	<0.00100					
C6-C36 TPH (mg/L)	1.58	<1.30	<1.30					
pH (su)	11.2	11.2	11.3					
Chloride (mg/L)	32.8	68.4	35.7					
	Me	tals						
SPLP Arsenic (mg/L)	<0.0100	<0.0100	<0.0100					
SPLP Cadmium (mg/L)	<0.00500	<0.00500	<0.00500					
SPLP Barium (mg/L)	<2.00	<2.00	<2.00					
SPLP Chromium (mg/L)	<0.100	<0.100	<0.100					
SPLP Lead (mg/L)	<0.00500	<0.00500	<0.00500					
SPLP Mercury (mg/L)	<0.000200	<0.000200	<0.000200					
SPLP Selenium (mg/L)	<0.0500	<0.0500	<0.0500					
SPLP Silver (mg/L)	<0.100	<0.100	<0.100					
SPLP Zinc (mg/L)	<0.0100	<0.0100	<0.0100					

		Geotechnical Summary					
	А В В						
Compressive Strength (psi)	286.3	126.1	239.6				
Hydraulic Conductivity (cm/sec)	6.37E-08	4.28E-08	5.73E-08				

Firmus® Location: FC2853-UT Ranch 15(14)-10-3-3-2W-UW(MW)

ANALYTICAL SUMMARY

	Ranch 16-10-3-3-2WH/ Aubrey 1A-15-22-3-2WH Pioneer Rig # 78	Jorgensen 2-4-9-3-2WH Pioneer Rig # 78	Perank 13-10-3-3-3WH Pioneer Rig # 44	
Cubic Yards	2,040	900	660	
Total Solids (%)	90.6	88.1	91.9	
Benzene (mg/kg)	<0.250	<0.0558	<0.0596	
C6-C36 TPH (mg/kg)	126,000	113,000	159,000	
pH (su)	9.5	11.4	11.3	
Chloride (mg/kg)	2,450	4,950	3,950	
Sulfates (mg/kg)	2,070	1,430	1,270	
		Metals		
Arsenic (mg/kg)	12.2	7.67	6.29	
Cadmium (mg/kg)	<2.50	<2.50	<2.50	
True Total Barium (mg/kg)	163,000	229,000	171,000	
Chromium (mg/kg)	28.6 19.9		23.4	
Lead (mg/kg)	13.9	9.21	14.0	
Mercury (mg/kg)	0.0366	0.0361	0.0511	
Selenium (mg/kg)	<2.50	<2.50	<2.50	
Silver (mg/kg)	<2.50	<2.50	<2.50	
Zinc (mg/kg)	31.6	39.6	50.3	

Ranch 15(14)-10-3-3-2W-UW(MW) FC2853-UT

GCO Labs, LLC 3505 West Loop 281 Longview, Texas 75604 903 / 291-0137 www.gco-labs.com

Customer:

J. Blake Scott

Scott Environmental Services, Inc.

P.O. Box 6215

Longview, Texas 75608

USA

Project: FC2853-UT Cust. Sample: FIRMUS A

Collected; 8/22/2014 Received: 11/19/2014

Lab ID: 141119Q004

Report Date: 12/16/2014

Lab ID. 1411190	Report Date. 12/1	10/2014					
Analysis	Results	Units	Method	Date	Time	Tech	
Chloride, 7-Day Leach	32.8	mg/L	LA 29B	12/1/2014	15:56	fgo	
pH@25C on 7-Day Leach	11.2	SÜ	LA 29B	12/1/2014	13:00	fgo	
Prep. 7-Day Day Leachate	1,950	g	LA29B*Modified	11/24/2014	9:00	fgo	
Total Solids for Dry Wt	95.3	%	SM 2540 G	11/20/2014	15:10	fgo	
SPLP Extraction: Non-Volatile	Completed	Result	SW-846 1312	11/20/2014	8:00	fgo	
SPLP ZHE Extraction	100% Solid	m∐g	SW-846 1312	11/24/2014	15:20	fgo	
Metals Digestion SPLP 3010	50/100	mL/mL	SW-846 3010B	11/26/2014	9:00	fgo	
SPLP Arsenic	< 0.0100	mg/L	SW-846 6010B	12/2/2014	12:02	fgo	
SPLP Barium	< 2.00	mg/L	SW-846 6010B	12/2/2014	12:02	fgo	
SPLP Cadmium	< 0.00500	mg/L	SW-846 6010B	12/2/2014	12:02	fgo	
SPLP Chromium	< 0.100	mg/L	SW-846 6010B	12/2/2014	12:02	fgo	
SPLP Lead	< 0.00500	mg/L	SW-846 6010B	12/2/2014	12:02	fgo	
SPLP Selenium	< 0.0500	mg/L	SW-846 6010B	12/2/2014	12:02	fgo	
SPLP Silver	< 0.100	mg/L	SW-846 6010B	12/2/2014	12:02	fgo	
SPLP Zinc	< 0.0100	mg/L	SW-846 6010B	12/2/2014	12:02	fgo	
Metal Digestion SPLP 7470	50/50	mL/mL	SW-846 7470A	12/2/2014	10:10	fgo	
SPLP Mercury	< 0.000200	mg/L	SW-846 7470A	12/3/2014	10:56	fgo	
SPLP Benzene	< 0.00100	mg/L	SW-846 8260B	12/1/2014	22:50	fgo	
1005 TPH Extraction	3/115	mL/mL	TNRCC TX 1005	12/1/2014	11:00	fgo	
C12 - C28 TPH, 7-Day Leach	1.58	mg/L	TNRCC TX 1005	12/1/2014	21:25	fgo	
C28 - C36 TPH, 7-Day Leach	< 1.30	mg/L	TNRCC TX 1005	12/1/2014	21:25	fgo	
C6 - C12 TPH, 7-Day Leach	< 1.30	mg/L	TNRCC TX 1005	12/1/2014	21:25	fgo	
C6 - C36 TPH, 7-Day Leach	1.58	mg/L	TNRCC TX 1005	12/1/2014	21:25	fgo	

Project: FC2853-UT Page 1 of 8 Report: 141119Q004-006

GCO Labs, LLC 3505 West Loop 281 Longview, Texas 75604 903 / 291-0137 www.gco-labs.com

Project: **FC2853-UT**Cust. Sample: **FIRMUS B**Lab ID: 141119Q005

Collected; 8/22/2014

Received: 11/19/2014

Report Date: 12/16/2014

Analysis	Results	Units	Method	Date	Time	Tech
			·	·		
Chloride, 7-Day Leach	68.4	mg/L	LA 29B	12/1/2014	16:09	fgo
pH@25C on 7-Day Leach	11.2	SU	LA 29B	12/1/20 <mark>1</mark> 4	13:00	fgo
Prep. 7-Day Day Leachate	1,960	g	LA29B*Modified	11/24/2014	9:00	fgo
Total Solids for Dry Wt	93.9	%	SM 2540 G	11/20/2014	15:10	fgo
SPLP Extraction: Non-Volatile	Completed	Result	SW-846 1312	11/20/2014	8:00	fgo
SPLP ZHE Extraction	100% Solid	mL/g	SW-846 1312	11/25/2014	15:00	fgo
Metals Digestion SPLP 3010	50/100	mL/mL	SW-846 3010B	11/26/2014	9:00	fgo
SPLP Arsenic	< 0.0100	mg/L	SW-846 6010B	12/2/2014	12:02	fgo
SPLP Barium	< 2.00	mg/L	SW-846 6010B	12/2/2014	12:02	fgo
SPLP Cadmium	< 0.00500	mg/L	SW-846 6010B	12/2/2014	12:02	fgo
SPLP Chromium	< 0.100	mg/L	SW-846 6010B	12/2/2014	12:02	fgo
SPLP Lead	< 0.00500	mg/L	SW-846 6010B	12/2/2014	12:02	fgo
SPLP Selenium	< 0.0500	mg/L	SW-846 6010B	12/2/2014	12:02	fgo
SPLP Silver	< 0.100	mg/L	SW-846 6010B	12/2/2014	12:02	fgo
SPLP Zinc	< 0.0100	mg/L	SW-846 6010B	12/2/2014	12:02	fgo
Metal Digestion SPLP 7470	50/50	mL/mL	SW-846 7470A	12/2/2014	10:10	fgo
SPLP Mercury	< 0.000200	mg/L	SW-846 7470A	12/3/2014	10:56	fgo
SPLP Benzene	< 0.00100	mg/L	SW-846 8260B	12/1/2014	23:20	fgo
1005 TPH Extraction	3/116	mL/mL	TNRCC TX 1005	12/1/2014	11:00	fgo
C12 - C28 TPH, 7-Day Leach	< 1.30	mg/L	TNRCC TX 1005	12/1/2014	21:59	fgo
C28 - C36 TPH, 7-Day Leach	< 1.30	mg/L	TNRCC TX 1005	12/1/2014	21:59	fgo
C6 - C12 TPH, 7-Day Leach	< 1.30	mg/L	TNRCC TX 1005	12/1/2014	21:59	fgo
C6 - C36 TPH, 7-Day Leach	< 1.30	mg/L	TNRCC TX 1005	12/1/2014	21:59	fgo

GCO Labs, LLC 3505 West Loop 281 Longview, Texas 75604 903 / 291-0137 www.gco-labs.com

Project: **FC2853-UT**Cust. Sample: **FIRMUS C**Lab ID: 141119Q006

Collected; 8/22/2014

Received: 11/19/2014

Report Date: 12/16/2014

Analysis	Results	Units	Method	Date	Time	Tech
Chloride, 7-Day Leach	35.7	mg/L	LA 29B	12/1/2014	16:24	fgo
pH@25C on 7-Day Leach	11.3	SU	LA 29B	12/1/2014	13:00	fgo
Prep. 7-Day Day Leachate	1,870	g	LA29B*Modified	11/24/2014	9:00	fgo
Total Solids for Dry Wt	93.8	%	SM 2540 G	11/20/2014	15:10	fgo
SPLP Extraction: Non-Volatile	Completed	Result	SW-846 1312	11/20/2014	8:00	fgo
SPLP ZHE Extraction	100% Solid	mL/g	SW-846 1312	11/25/2014	15:00	fgo
Metals Digestion SPLP 3010	50/100	mL/mL	SW-846 3010B	11/26/2014	9:00	fgo
SPLP Arsenic	< 0.0100	mg/L	SW-846 6010B	12/2/2014	12:02	fgo
SPLP Barium	< 2.00	mg/L	SW-846 6010B	12/2/2014	12:02	fgo
SPLP Cadmium	< 0.00500	mg/L	SW-846 6010B	12/2/2014	12:02	fgo
SPLP Chromium	< 0.100	mg/L	SW-846 6010B	12/2/2014	12:02	fgo
SPLP Lead	< 0.00500	mg/L	SW-846 6010B	12/2/2014	12:02	fgo
SPLP Selenium	< 0.0500	mg/L	SW-846 6010B	12/2/2014	12:02	fgo
SPLP Silver	< 0.100	mg/L	SW-846 6010B	12/2/2014	12:02	fgo
SPLP Zinc	< 0.0100	mg/L	SW-846 6010B	12/2/2014	12:02	fgo
Metal Digestion SPLP 7470	50/50	mL/mL	SW-846 7470A	12/2/2014	10:10	fgo
SPLP Mercury	< 0.000200	mg/L	SW-846 7470A	12/3/2014	10:56	fgo
SPLP Benzene	< 0.00100	mg/L	SW-846 8260B	12/1/2014	23:50	fgo
1005 TPH Extraction	3/115	mL/mL	TNRCC TX 1005	12/1/2014	11:00	fgo
C12 - C28 TPH, 7-Day Leach	< 1.30	mg/L	TNRCC TX 1005	12/1/2014	22:32	fgo
C28 - C36 TPH, 7-Day Leach	< 1.30	mg/L	TNRCC TX 1005	12/1/2014	22:32	fgo
C6 - C12 TPH, 7-Day Leach	< 1.30	mg/L	TNRCC TX 1005	12/1/2014	22:32	fgo
C6 - C36 TPH, 7-Day Leach	< 1.30	mg/L	TNRCC TX 1005	12/1/2014	22:32	fgo

Project: FC2853-UT Page 3 of 8 Report: 141119Q004-006

GCO Labs, LLC 3505 West Loop 281 Longview, Texas 75604 903 / 291-0137 www.gco-labs.com

Quality Control Data

Analyte	QC Parameter		Result Units	Reference Value	Units
Chloride	Blank	Method Blank	< 5.0 ppm		
	CCV1	Recovery	103 %	True Value	20 ppm
	CCV2	Recovery	95.7 %	True Value	10 ppm
	CCV3	Recovery	96.7 %	True Value	10 ppm
	Dup-A	A Reading	18.8 ppm		
	Dup-B	B Reading	17.5 ppm		
	Dup-RPD1	Relative% Difference	6.9 %		
	Dup-C	Reading	485 ppm		
	Dup-D	Reading	422.5 ppm		
	Dup-RPD2	Relative% Difference	13.8 %		
	MS	Recovery	90.9 %	Spike Amount	8 ppm
	MS	Recovery	111 %	Spike Amount	8 ppm
C6-C12 TPH	Blank	Method Blank	< 1.3 ppm		
	CCV1	Recovery	99.2 %	True Value	1000 ppm
	CCV2	Recovery	109 %	True Value	1000 ppm
	LCS	Recovery	91.9 %	Spike Amount	500 ppm
	LCSD	Recovery	85.6 %	Spike Amount	500 ppm
	LCS-RPD	Relative% Difference	7.05 %		• •
	MS	Recovery	101 %	Spike Amount	500 ppm
	MSD	Recovery	97.1 %	Spike Amount	500 ppm
	MS-RPD	Relative% Difference	3.69 %		
C12-C28 TPH	Blank	Method Blank	< 1.3 ppm		
	CCV1	Recovery	102 %	True Value	500 ppm
	CCV2	Recovery	127 %	True Value	1000 ppm
	LCS	Recovery	80.6 %	Spike Amount	500 ppm
	LCSD	Recovery	86.9 %	Spike Amount	500 ppm
	LCS-RPD	Relative% Difference	7.47 %		
	MS	Recovery	110 %	Spike Amount	500 ppm
	MSD	Recovery	122 %	Spike Amount	500 ppm
	MS-RPD	Relative% Difference	10 %		
SPLP Benzene	Blank	Method Blank	< 0.0010 ppm		
	CCV1	Recovery	100 %	True Value	0.02 ppm
	LCS	Recovery	100 %	Spike Amount	0.02 ppm
	LCSD	Recovery	98.2 %	Spike Amount	0.02 ppm
	LCS-RPD	Relative% Difference	2.17 %		
	MS	Recovery	97 %		0.02 ppm
	MSD	Recovery	93.8 %	Spike Amount	0.02 ppm
	MS-RPD	Relative% Difference	3.4 %		

Project: FC2853-UT Page 4 of 8 Report: 141119Q004-006

GCO Labs, LLC 3505 West Loop 281 Longview, Texas 75604 903 / 291-0137 www.gco-labs.com

Analyte	QC Parameter		Result Units	Reference Value		Units
pH at 25 C	Dup-A(pH)	Reading	11.52 SU			
	Dup-B(pH)	Reading	11.53 SU			
	Dup-RPD1	Relative% Difference	0.09 %			
	pH 10 Buffer(1st)	Reading	10.02 SU	True Value	10.01	SU
	pH 10 Buffer(2nd) Reading	9.99 SU	True Value	10.01	SU
	pH 7 Buffer(1st)	Reading	7 SU	True Value	7	SU
	pH 7 Buffer(2nd)	Reading	6.97 SU	True Value	7	SU
SPLP Silver	Blank	Method Blank	< 0.10 ppm			
	CCV1	Recovery	104 %	True Value	1	ppm
	CCV2	Recovery	109 %	True Value	1	ppm
	CCV3	Recovery	107 %	True Value	1	ppm
	ICV	Recovery	102 %	True Value		ppm
	LCS	Recovery	98.3 %	Spike Amount		ppm
	LCSD	Recovery	92.5 %	Spike Amount		ppm
	LCS-RPD	Relative% Difference	6.08 %			
	MS	Recovery	92.9 %	Spike Amount	0.2	ppm
	MSD	Recovery	84.8 %	Spike Amount		ppm
	MS-RPD	Relative% Difference	9.12 %			
SPLP Arsenic	Blank	Method Blank	< 0.010 ppm			
SI LI AISCIIIC	CCV1	Recovery	106 %	True Value	5	ppm
	CCV2	Recovery	110 %	True Value		ppm
	CCV3	Recovery	108 %	True Value		ppm
	ICV	Recovery	101 %	True Value		ppm
	LCS	Recovery	98.8 %	Spike Amount		ppm
	LCSD	Recovery	92.3 %	Spike Amount		ppm
	LCS-RPD	Relative% Difference	6.8 %	Opino i irrodin		pp
	MS	Recovery	91.9 %	Spike Amount	1	ppm
	MSD	Recovery	86.6 %	Spike Amount		ppm
	MS-RPD	Relative% Difference	5.94 %	Opike Amount	'	ppiii
SPLP Barium		Method Blank	< 2.0 ppm			
SPLF Danum	Blank CCV1		96.7 %	True Value	5	ppm
	CCV2	Recovery	103 %	True Value		ppm
	CCV2	Recovery	103 %	True Value		ppm
		Recovery	93.2 %	True Value		ppm
	ICV	Recovery	98.8 %	Spike Amount		ppm
	LCS LCSD	Recovery	98.8 % 87.9 %	Spike Amount		ppm
		Recovery	11.7 %	Spike Amount	'	ppiii
	LCS-RPD	Relative% Difference		Cniko Amount	4	ppm
	MS	Recovery	80.3 %	Spike Amount		ppm
	MSD	Recovery	69.3 %	Spike Amount	3	ppiii
2010	MS-RPD	Relative% Difference	14.7 %			
SPLP Cadmium	Blank	Method Blank	< 0.0050 ppm	Taus Malus	2.5	nnm
	CCV1	Recovery	105 %	True Value		ppm
	CCV2	Recovery	109 %	True Value		ppm
	CCV3	Recovery	107 %	True Value		ppm
	ICV	Recovery	101 %	True Value		ppm
	LCS	Recovery	98.9 %	Spike Amount		ppm
	LCSD	Recovery	93.4 %	Spike Amount	0.5	ppm
	LCS-RPD	Relative% Difference	5.72 %		_	
	MS	Recovery	85.2 %	Spike Amount	0.5	ppm

GCO Labs, LLC 3505 West Loop 281 Longview, Texas 75604 903 / 291-0137 www.gco-labs.com

Analyte	QC Paramete	r	Result Units	Reference Value		Units
	MSD	Recovery	80.7 %	Spike Amount	0.5	ppm
	MS-RPD	Relative% Difference	5.42 %			
SPLP Chromium	Blank	Method Blank	< 0.10 ppm			
	CCV1	Recovery	102 %	True Value	5	ppm
	CCV2	Recovery	107 %	True Value	5	ppm
	CCV3	Recovery	105 %	True Value		ppm
	ICV	Recovery	97.5 %	True Value	5	ppm
	LCS	Recovery	96.3 %	Spike Amount	1	ppm
	LCSD	Recovery	90.3 %	Spike Amount		ppm
	LCS-RPD	Relative% Difference	6.43 %			•
	MS	Recovery	84.5 %	Spike Amount	1	ppm
	MSD	Recovery	78 %	Spike Amount		ppm
	MS-RPD	Relative% Difference	8 %	·		
SPLP Mercury	Blank	Method Blank	< 0.00020 ppm			
	CCV1	Recovery	100 %	True Value	10	ppm
	CCV2	Recovery	103 %	True Value		ppm
	CCV3	Recovery	104 %	True Value		ppm
	ICV	Recovery	107 %	True Value		ppm
	LCS	Recovery	96 %	Spike Amount		ppm
	LCSD	Recovery	97.1 %	Spike Amount		ppm
	LCS-RPD	Relative% Difference	1.14 %			PP
	MS	Recovery	101 %	Spike Amount	0.01	maa
	MSD	Recovery	111 %	Spike Amount	0.01	
	MS-RPD	Relative% Difference	9.51 %		0.0.	PP
SPLP Lead	Blank	Method Blank	< 0.0050 ppm			
	CCV1	Recovery	106 %	True Value	5	ppm
	CCV2	Recovery	110 %	True Value		ppm
	CCV3	Recovery	108 %	True Value		ppm
	ICV	Recovery	101 %	True Value		ppm
	LCS	Recovery	101 %	Spike Amount		ppm
	LCSD	Recovery	95.2 %	Spike Amount		ppm
	LCS-RPD	Relative% Difference	5.91 %	Opino / infount	•	ррии
	MS	Recovery	87.6 %	Spike Amount	1	ppm
	MSD	Recovery	82.7 %	Spike Amount		ppm
	MS-RPD	Relative% Difference	5.75 %	Opike Amount	4:	ppiii
	Blank	Method Blank	< 0.050 ppm			
	CCV1	Recovery	106 %	True Value	5	ppm
	CCV2	Recovery	109 %	True Value		ppm
	CCV3	Recovery	108 %	True Value		ppm
	ICV	Recovery	102 %	True Value		ppm
	LCS	Recovery	96.3 %	Spike Amount		
	LCSD	Recovery	89.2 %	Spike Amount		ppm ppm
		•		Spike Amount	ľ	ppiii
	LCS-RPD	Relative% Difference	7.65 %	Snika Amaunt	4	nnm
	MS	Recovery	88.5 %	Spike Amount		ppm
	MSD MS BBB	Recovery	82.5 %	Spike Amount	Т	ppm
ODI D 71-	MS-RPD	Relative% Difference	7.02 %			
SPLP Zinc	Blank	Method Blank	< 0.010 ppm	Two Matrix	_	
	CCV1	Recovery	106 %	True Value		ppm
	CCV2	Recovery	109 %	True Value	5	ppm

Project: FC2853-UT Page 6 of 8 Report: 141119Q004-006

GCO Labs, LLC 3505 West Loop 281 Longview, Texas 75604 903 / 291-0137 www.gco-labs.com

Analyte	QC Parameter	r	Result Units	Reference Value	Units
	CCV3	Recovery	107 %	True Value	5 ppm
	ICV	Recovery	101 %	True Value	5 ppm
	LCS	Recovery	98.4 %	Spike Amount	1 ppm
	LCSD	Recovery	93.3 %	Spike Amount	1 ppm
	LCS-RPD	Relative% Difference	5.32 %		
	MS	Recovery	84.9 %	Spike Amount	1 ppm
	MSD	Recovery	79.6 %	Spike Amount	1 ppm
	MS-RPD	Relative% Difference	6.44 %		
Total Solids	Blank%	Method Blank	< 0.10 %		
	Dup-A%	A Reading	96.1 %		
	Dup-B%	B Reading	95.9 %		
	Dup-RPD1	Relative% Difference	0.184 %		
	Dup-C%	Reading	88.8 %		
	Dup-D%	Reading	91.3 %		
	Dup-RPD2	Relative% Difference	2.79 %		

Approved by

Greg Oliver, Lab Manager

Drug Oliver

Project: FC2853-UT Page 7 of 8 Report: 141119Q004-006

GCO Labs, LLC 3505 West Loop 281 Longview, Texas 75604 903 / 291-0137 www.gco-labs.com

Laboratory Approved by the Texas Railroad Commission Scott Environmental Services Report to: H 000 61 11 11 Lab Use Only HIHA Quob F/BMW HILLIA DOS FIRMUS 1Aly 15 10 Pacoton Cracia P.O. Box 6215 J. B. Scott Longview Relinquished by Longview, Texas 75604 3505 W. Loop 281 W Printed Name ch 13 6 Chain of Custody Project name/Location. 0 Billing Address (if different): SCO STREET 2012 2853-01 Received by: - LANGE (1055 Test using LAZA-B-SESI modified 7-day leachate method for Land Com greg.oliver@gco-labs.com (903)291-0137 (903)452-1929 Chlorides # PH A TPH & < visit us at www.gco-labs.com SPLP metals Athlation: Colaba

Ranch 15(14)-10-3-3-2W-UW(MW)

FC2853-UT

Home Office - 1717 East Erwin Street Tyler, Texas 75702-6398

595-4421 Lab: (903) 595-6402 Fax: (903) 595-6113

Area Offices

210 Beech Street 707 West Collon St.

Texarkana, AR 71854 Longview, TX 75604 2000 E Randol Mill Rd. Ste 613 Arlington, TX 76011

(870) 772-0013 (903) 758-0402 (817) 962-0048

Acct ID: Report Date: 11/12/2014

Project:

Client:

Location:

SCOTTENV

Proj. No.: C6109-141

Date Sampled: 09/10/2014

Sampled By: Client

By Order Of: Blake Scott

Scott Environmental General File 2014, Longview, TX Material origin: Onsite, Sample location: FC2853-UT (A)

Scott Environmental Services, Longview, TX

Contractor: Not Given

Modified Proctor REPORT: Material:

POBC-A

LAB NO:

Order Number:

S-12598 See Below

Test Method:

Client PO:

TEST RESULTS

Report No: Page 1 of 5 1-1700-000123

							ation				
			ſ	or S	G =	2,7	Esti	mat	ed		
	140						1				
		::::	:::		:::		::>	·			
	135 -							/			
		::::	- 241		-				1	::	
Ħ	130 -	1		:::		-	12		:::	7.	::
<u>.</u>			:	:::			- 4	1			5
6	108-				=				7::		
a a	16.0	111							-7.	::	::
Ξ									111	7:	
_	120 -									1	
	- 1										
	115	::::		:::		:::				-:	1
		::::	:::	:::	:::	:::	:::		:::	:::	::
	110 -		7		-	+	-	-,-			H
	2	3	4	R	6	T		9	10	11	12

Moisture Content, percent

6.0	Optimum	1	132.5	Maximum
10.5			121.8	
8.3			127.9	
6.4			132.6	
4.6			131.6	
2.9			130.5	
<u>% Moistur</u>	e	Dry Den	isity L.bs	s./Cu. <u>Ft.</u>

Color: Gray & Brown Description: POBC-A

Standard Method: A

Desc of Rammer:Mechanical

Preparation Method:Moist

Remarks: These tests were performed solely at the request of the Client for his own use. No warranties are expressed or implied regarding the suitability of the site for construction or whether or not the reported data represents all conditions of the site.

Test Method (As Applicable): ASTM D1557, Method-A

Charge: Scott Environmental Services, Longview, TX Alin: Blake Scott Orig: Scott Environmental Services, Longview, TX Attn: Blake Scott

Respectfully Submitted,

ETTL Engineers & Consultants, Inc.

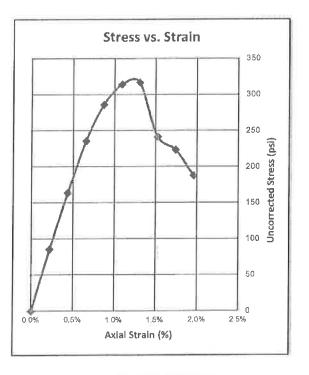
THIS REPORT APPLIES ONLY TO THE STANDARDS OR PROCEDURES INDICATED AND TO THE SAMPLE(S) TESTED AND/OR OBSERVED AND ARE NOT NECESSARILY INDICATIVE OF THE QUALITIES OF APPARENTLY IDENTICAL OR SIMILAR PRODUCTS OR PROCEDURES, NOR DO THEY REPRESENT AN ONGOING QUALITY ASSURANCE PROGRAM UNLESS 60 NOTED. THESE REPORTS ARE FOR THE EXCLUSIVE USE OF THE ADDRESSED CLIENT AND ARE NOT TO BE REPRODUCED WITHOUT WRITTEN PERMISSION

REPORT CREATED BY ElmTree SYSTEM

ETTL Engineers & Consultants Inc.

GEOTECHNICAL * MATERIALS * ENVIRONMENTAL * DRILLING * LANDFILLS

Compressive Strength of Molded Soil-Cement Cylinders, ASTM D 1633 Method A Unconfined Compressive Strength of Compacted Soil-Lime Mixtures, ASTM D 5102 Procedure B


Project Information							
		SESI Job # FC 2853-UT (A)					
Client/Arch./Engr.:	Scott Enviromental S	cott Enviromental Services Inc. Longview, Texas					
Contractor:	Not Given	lot Given					
Job No.:	C 6109-141						
Sample Information							
Location/Boring No:	SESI Job # FC 2853	-UT (A)	Sample Date:	8/22/2014			
Sample No.;	12598	Depth:	ft.				
Material Origin:	On Site						
Sampling Info. provided By:	Client						
Material Description:	Gray & Brown POBC-A						
Sampled By:	SESI						
Technician:	Todd Sliger		Test Date:	9/23/2014			

Test Data

Curing Method:

Sample moist cured at temperature of ~73 deg F for 7 days prior to conducting test.

	ASTM D 1557	Molding Method:
	6.0%	Optimum Moisture Content:
	132.5	Maximum Density:
	6.4%	Molded Moisture Content:
	132.6	Molded Density:
٦	3,994	Diameter Before Curing:
	4.591	Height Before Curing:
	1.149	H/D Ratio Before Curing:
7	4.021	Diameter After Curing:
	4.600	Height After Curing:
	1.144	H/D Ratio After Curing:
	12.70	Area After Curing:
	0.905	H/D Correction Factor:
	15.0	Seating Load:
	4072	Compression Load
	4087	Total Load:
	0.0	Confining Pressure:
	321.8	Maximum Stress:
	286.3	Corrected Maximum Stress:
1	1.3%	Peak Strain:
	Cylindrical	Failure Type:

Respectfully Submitted,

Hermann Walka, P.E.

Main Office:

1717 East Erwin Steet Tyler, Texas 75702

Longview Branch:

707 West Cotton Street Longview, Texas 75604-5505

Texarkana Branch:

210 Beech Street Texarkana, Arknsas 71854

Arlington Branch:

2000 E. Randol Mill Rd. Suite 613 Arlington, Texas 76011

Phone: 903-595-4421 Fax: 903-595-6613

Phone:817-962-0048

WWW.ETTTLINC.COM

ETTL Engineers & Consultants Inc.

GEOTECHNICAL * MATERIALS * ENVIRONMENTAL * DRILLING * LANDFILLS

Hydraulic Conductivity Determination Flexible Wall Permeameter (Mercury Permometer Test) ASTM D 5084, Method E

Project	t In	itor	ma	tior	1
---------	------	------	----	------	---

Project: SESI Job # FC 2853-UT (A) Scott Environmental Services, Longview

Client/Arch./Engr.: Scott Environmental Services, Inc., Longview, Texas

Project Location: not given

Job No.: C 6109-141

Sample Information

Location / Boring No: FC 2853-UT (A)

Sample No.: 12598 Depth (ft.):

Material Origin: On Site

Sampling Info. provided By: Client

Material Description: Gray & Brown POBC-A

g

ìn

Sampled By: Client

Technician: H. Walka

Date Sampled: 8/22/2014

Test Date: 10/14/2014

Sample Data

Initial Sample Data

Wet Wt:	of Sample	627,60
	Diameter	: 2.781

132.5

in Length: Area: 6.073 in³ 16.998 Volume: 140.6 Unit Wt.(wet):

Unit Wt.(dry): Assumed Specific Gravity:

> Void ratio (e) = 0.15 Porosity (n)= 99.0 Measured B-Value:

2.50 Calculated % saturation:

Moisture Content Data

	Moistare on
Before Test	
Tare Wt:	127.80
Wet Wt.+tare:	521.50
Dry Wt.+tare:	498.90
Dry Wt. Soil:	371.10
Water Wt.:	22.60
% moist.:	6.1

Tare Wt: 129.60 Wet Wt.+tare: 773:70 Dry Wt.+tare: 732.70 Dry Wt. Soil: 603.10 41.00 Water Wt.: 6.8 % moist.:

After Test

Molding Properties

Molding/Preparation Method	d;	D 1557	
Max Dry Density(pcf)	= 132.5	OMC =	6.0
% of Max Density	= 100.0	+/- OMC =	0.1
III. P	I.	_200%·	

Test Readings

Z ₁ (Mercury	Height Different	ce @ t ₁):
	alamand t	7

5.2	cm
ファ	ten

	Hydraulic	Gradient	
_			

9.	1	6	

Reading Date	elapsed t (seconds)	Z (pipet @ t)	ΔZp (cm)	temp (deg C)	α (temp corr)	k (cm/sec)	k (ft./day)
10/21/2014	1227	5.7	0.962	25.0	0.889	6.79E-08	1.93E-04
10/21/2014	1438	5.6	1.062	25.0	0.889	6.48E-08	1.84E-04
10/21/2014	1661	5.5	1.162	25.0	0.889	6.21E-08	1,76E-04
10/21/2014	1895	5.4	1.262	25.0	0.889	5.99E-08	1.70E-04

Summary Table						
Hydraulic conductivity	k =	6.37E-08	cm/sec	1.80E-04	ft/day	
Void Ratio	е=	0.18				
Porosity	n =	0.15				
Bulk Density	$\gamma =$	2.25	g/cm ³	140.6	pcf	
Water Content	W ==	0.13	cm ³ /cm ³	(at 20 deg		
Intrinsic Permeability	$k_{int} =$	6.52E-13	cm	(at 20 deg		

Respectfully Submitted,

Hermann Walka, P.E.

Page 1

Main Office: 1717 East Erwin Street Tyler, Texas 75702

Longview Branch: 707 West Cotton Street Longview, Texas 75604-5505

Texarkana Branch: 210 Beech Street Texarkana, Arkansas 71854


Arlington Branch: 2000 E. Randol Mill Rd. Suite 613 Arlington, Texas 76011

WWW.ETTTLINC.COM

Phone: 903-595-4421 Fax: 903-595-6613

Phone: 903-758-0915 Fax: 903-758-8245 Phone: 870-772-0013 Fax: 870-216-2413

Phone: 817-962-0048 Fax: 817-962-0025

Ranch 15(14)-10-3-3-2W-UW(MW)

FC2853-UT

Home Office - 1717 East Erwin Street

Tyler, Texas 75702-6398

303) 595-4421 Lab: (903) 595-6402 Fax: (903) 595-6113

Date Sampled: 09/10/2014

Sampled By: Client By Order Of: Blake Scott

Area Offices

Texarkana, AR 71854

(870) 772-0013 (903) 758-0402

Longview, TX 75604 ın St. Mill Rd, Ste 613 Arlington, TX 76011

(817) 962-0048

Proj. No.: C6109-141 Acct ID: SCOTTENV

Report Date: 11/11/2014

Project: Location:

Client:

Scott Environmental Services, Longview, TX

Contractor:

Not Given

REPORT: **Modified Proctor** POBC-B Material:

Scott Environmental General File 2014, Longview, TX Materail origin: Onsite, Sample location: FC2853-UT (B)

set.

LAB NO:

Order Number:

S-12599

See Below Test Method:

Client PO: 8 TEST RESULTS

Report No: Page 1 of 5 1-1700-000124

	100% saturation line
	for SG = 2.7 Estimated
140	
135	
100	
130	
L	7
3	
155	
196.0	
125	
`	
120	

% Moisture	<u>Dr</u>	y Density L.bs.	/Cu,Ft,
3.5		129.0	
5.4		130.7	
7.1		130.9	
9.6		123.7	
11.4		118.2	
6.0	Optimum	131.0	Maximum

Color: Gray & Brown Description: POBC-B

Standard Method: A

Desc of Rammer:Mechanical

Preparation Method:Moist

Remarks: These tests were performed solely at the request of the Client for his own use. No warranties are expressed or implied regarding the suitability of the site for construction or whether or not the reported data represents all conditions of the site.

Test Method (As Applicable): ASTM D1557, Method-A

á. 9 Moisture Content, percent

Charge: Scott Environmental Services, Longview, TX Attn: Blake Scott Orig: Scott Environmental Services, Longview, TX Attn: Blake Scott

Respectfully Submitted,

ETTL Engineers & Consultants, Inc.

Hermann Walka, P.E.

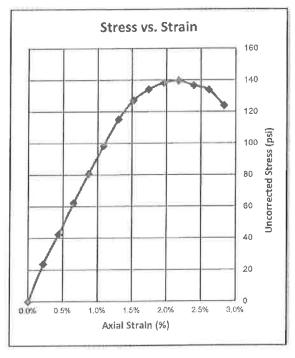
THIS REPORT APPLIES ONLY TO THE STANDARDS OR PROCEDURES INDICATED AND TO THE SAMPLE(S) TESTED AND/OR OBSERVED AND ARE NOT NECESSARILY INDICATIVE OF THE QUALITIES OF APPARENTLY IDENTICAL OR SIMILAR PRODUCTS OR PROCEDURES, NOR DO THEY REPRESENT AN ONGOING QUALITY ASSURANCE PROGRAM UNLESS SO NOTED. THESE REPORTS ARE FOR THE EXCLUSIVE USE OF THE ADDRESSED CLIENT AND ARE NOT TO BE REPRODUCED WITHOUT WRITTEN PERMISSION.

REPORT CREATED BY ElinTree SYSTEM

ETTL Engineers & Consultants Inc.

GEOTECHNICAL * MATERIALS * ENVIRONMENTAL * DRILLING * LANDFILLS

Compressive Strength of Molded Soil-Cement Cylinders, ASTM D 1633 Method A Unconfined Compressive Strength of Compacted Soil-Lime Mixtures, ASTM D 5102 Procedure B


Project Information							
Project:	SESI Job # FC 2853	B-UT (B)					
Client/Arch./Engr.:	Scott Environmental S	cott Enviromental Services Inc: Longview, Texas					
	Not Given						
Job No.:	C 6109-141						
Sample Information							
Location/Boring No:	SESI Job # FC 2853	3-UT (B)	Sample Date:	8/22/2014			
Sample No.:	12599	Depth:	ft.				
Material Origin:	On Site						
Sampling Info. provided By:	Client						
Material Description:	Gray & Brown POBC-I	3					
Sampled By:	SESI						
Technician:	Todd Sliger		Test Date:	9/23/2014			

Test Data

Curing Method:

Sample moist cured at temperature of ~73 deg F for 7 days prior to conducting test.

Molding Method:	ASTM D 1557	
Optimum Moisture Content:	6.0%	
Maximum Density:	131	pc
Molded Moisture Content:	7.1%	
Molded Density:	130,9	po
Diameter Before Curing:	3.994	in
Height Before Curing:	4.591	in
H/D Ratio Before Curing:	1.149	
Diameter After Curing:	4.024	in
Height After Curing:	4.592	in
H/D Ratio After Curing:	1.141	
Area After Curing:	12.72	in
H/D Correction Factor:	0.904	
Seating Load:	15.0	lb:
Compression Load:	1814	lb:
Total Load:	1829	lb
Confining Pressure:	0.0	ps
Maximum Stress:	143.8	ps
Corrected Maximum Stress:	126.1	ps
Peak Strain:	2.2%	
Fallure Type:	Cylindrical	

Respectfully Submitted,

Hermann Walka, P.E.

Main Office: Longview Branch: 1717 East Erwin Steet Tyler, Texas 75702

Texarkana Branch:

707 West Cotton Street Longview, Texas 75604-5505 210 Beech Street Texarkana, Arknsas 71854

Arlington Branch:

2000 E. Randol Mill Rd. Suite 613 Arlington, Texas 76011

WWW.ETTTLINC.COM

Phone: 903-595-4421 Phone: 903-758-0915 Fax: 903-758-8245

Fax: 903-595-6613

Phone: 870-772-0013 Fux: 870-216-2413

Phone:817-962-0048

ETTL Engineers & Consultants Inc.

GEOTECHNICAL * MATERIALS * ENVIRONMENTAL * DRILLING * LANDFILLS

Hydraulic Conductivity Determination Flexible Wall Permeameter

	(M-	ercury P	ermomete	r Test) 🛚	ASTM D 5	084, Meth	od E		
Project Informat	•	-		•					
-	Project:	SESI Job	# FC 2853-l	JT (B) Sco	ott Environm	ental Service	s, Longviev	V	
Cli	ent/Arch./Engr.:	Scott Envi	ronmental Se	rvices, Inc	., Longview,	Texas		-0	
F	Project Location:	not given							
	Job No.:	C 6109-14	1						
Sample Informat	tion								
Locat	tion / Boring No:	FC 2853-U	T (B)						
	Sample No.:	12	599	Depth (ft.)	:	_ft.			
	Material Origin:	On Site							
Sampling In	fa. provided By:	Client							
Mate	rial Description:	Gray & Bro	wn POBC-B	_					
	Sampled By:	Client				Dat	te Sampled:	8/22/2014	
	Technician:	H. Walka				· ·	Test Date:	10/21/2014	
Sample Data									
-	Initial Sample [)ata				Moisture C	ontent Dat	a	
	Wt: of Sample :	634.40	g		Before Tes	st		After Test	
	Diameter :	2.793	in		Tare Wt:	132.30		Tare Wt:	121.70
	Length:	2.837	ín	W	et Wt.+tare:		V	/et Wt.+tare:	763.20
	Area:	6,128	in ²	D	ry Wt.+tare:	498.90	. E	ry Wt.+tare:	717.10
	Volume:	17,388	– ín ³		ry Wt. Soil:	366.60		Dry Wt. Soil:	595.40
	Unit Wt.(wet):	138.9	pef		Water Wt.:	23.00		Water Wt.:	46.10
	Unit Wt.(dry):	130.7	pcf		% moist.:	6.3		% moist.:	7.7
Assumed S	Specific Gravity:	2.50	_						
Calculated	d % saturation: ˈ	80.9				Molding	Properties		
\	/oid ratio (e) =	0.19		Mold	ing/Prepara	tion Method:		D 1557	
	Porosity (n)=	0.16	2		Max Dry D	Density(pcf) =	131.0	OMC =	6.0
Mea	sured B-Value:	99.0	%		% of Ma	ax Density =	99.8	+/- OMC = _	0.3
				LL:		PI:		-200%:_	
Foot Poodings									
Test Readings	Z ₁ (Mercury F	leight Differ	ence @ t ₁):	5.2	cm	Hydraulic Gr	adient =	9.03	
		elapsed t	Z	ΔZp	temp	α	k	k	
	Reading Date			(cm)	(deg C)	(temp corr)	(cm/sec)	(ft./day)	
	10/21/2014	1063	6.1	0.562	25.0	0.889	4.39E-08	1.25E-04	
	10/21/2014	1255	6.0	0.662	25.0	0.889	4.43E-08	1.26E-04	
	10/21/2014	1518	5.9	0.762	25.0	0.889	4.27E-08	1.21E-04	

-14		- 17					
Reading Date	elapsed t (seconds)	Z (pipet @ t)	ΔZp (cm)	temp (deg C)	α (temp corr)	k (cm/sec)	k (ft./day)
10/21/2014	1063	6.1	0.562	25.0	0.889	4.39E-08	1.25E-04
10/21/2014	1255	6.0	0.662	25.0	0.889	4.43E-08	1.26E-04
10/21/2014	1518	5.9	0.762	25.0	0.889	4.27E-08	1.21E-04
10/21/2014	1832	5.8	0.862	25.0	0.889	4.05E-08	1.15E-04

Summary Table						
k =	4.28E-08	cm/sec	1.21E-04	ft/day		
e =	0.19					
n =	0.16					
γ =	2.23	g/cm ³	138.9	pcf		
W =	0.13	cm ³ /cm ³	(at 20 deg			
	e = n = γ = W =	k = 4.28E-08 e = 0.19 n = 0.16 γ = 2.23 W = 0.13	$k = 4.28E-08 \text{ cm/sec}$ $e = 0.19$ $n = 0.16$ $\gamma = 2.23 \text{ g/cm}^3$	k = 4.28E-08 cm/sec 1.21E-04 e = 0.19 n = 0.16 $\gamma = 2.23 \text{ g/cm}^3$ 138.9 $W = 0.13 \text{ cm}^3/\text{cm}^3$ (at 20 deg		

Respectfully Submitted,

Hermann Walka, P.E.

Main Office: 1717 East Erwin Street Tyler, Texas 75702

Longview Branch: 707 West Cotton Street Longview, Texas 75604-5505 Texarkana Branch: 210 Beech Street Texarkana, Arkansas 71854

Arlington Branch: 2000 E. Randol Mill Rd. Suite 613 Arlington, Texas 76011

Phone: 903-595-4421 Fax: 903-595-6613 Phone: 903-758-0915 Fax: 903-758-8245 Phone: 870-772-0013 Fax: 870-216-2413 Phone: 817-962-0048 Fax: 817-962-0025

WWW.ETTTLINC.COM

Page 1

Ranch 15(14)-10-3-3-2W-UW(MW)

FC2853-UT

Home Office - 1717 East Erwin Street Tyler, Texas 75702-6398

-4421 Lab: (903) 595-6402 Fax: (903) 595-6113

Area Offices

Texarkana, AR 71854

(870) 772-0013

707 West Cotton St.

Longview, TX 75604

(903) 758-0402

(817) 962-0048

2000 E Randol Mill Rd. Ste 613 Arlington, TX 76011

Acct ID: SCOTTENV Report Date: 11/11/2014

Proj. No.: C6109-141

Date Sampled: 09/10/2014

Sampled By: Client

By Order Of: Blake Scott

Location:

Scott Environmental General File 2014, Longview,TX Material origin: Onsite, Sample location: FC2853-UT (C)

Order Number:

Client:

Project:

Scott Environmental Services, Longview, TX

Not Given Contractor:

REPORT:

Modified Proctor

LAB NO:

S-12600

Material:

POBC-C

Test Method:

See Below

Client PO:

8

TEST RESULTS

Report No:

1-1700-000125

Page 1 of 5

	100% saturation line
	for SG = 2.7 Estimated
135	
130 -	
100	
125 -	
120-	The state of the s
150	
- 3	
115 -	
	/
- 7	
2000	
110-	
- 3	

% Moisture	D	ry Density Lbs	./Сu.Ft.	
12.8		115.4		
4.9		124.7		
6.9		125.7		
9,1		126.1		
10.8		120.5		
8.0	Optimum	126.0	Maximum	

Color: Gray & Brown Description: POBC-C

Standard Method: A

Desc of Rammer:Mechanical

Preparation Method:Moist

Remarks: These tests were performed solely at the request of the Client for his own use. No warranties are expressed or implied regarding the suitability of the site for construction or whether or not the reported data represents all conditions of the site.

Test Method (As Applicable): ASTM D1557, Method-A

8 9 10 11 12 13 Moisture Content, percent

Charge: Scott Environmental Services, Longview, TX Attn: Blake Scott Orig: Scott Environmental Services, Longview, TX Attn: Blake Scott

Respectfully Submitted,

ETTL Engineers & Consultants, Inc.

Hermann Walka, P.E.

THIS REPORT APPLIES ONLY TO THE STANDARDS OR PROCEDURES INDICATED AND TO THE SAMPLE(S) TESTED AND/OR OBSERVED AND ARE NOT NECESSARILY INDICATIVE OF THE QUALITIES OF APPARENTLY IDENTICAL OR SIMILAR PRODUCTS OR PROCEDURES, NOR DO THEY REPRESENT AN ONGOING QUALITY ASSURANCE PROGRAM UNLESS SO NOTED. THESE REPORTS ARE FOR THE EXCLUSIVE USE OF THE ADDRESSED CLIENT AND ARE NOT TO BE REPRODUCED WITHOUT WRITTEN PERMISSION

REPORT CREATED BY ElmTree SYSTEM

ETTL Engineers & Consultants Inc.

GEOTECHNICAL * MATERIALS * ENVIRONMENTAL * DRILLING * LANDFILLS

Compressive Strength of Molded Soil-Cement Cylinders, ASTM D 1633 Method A Unconfined Compressive Strength of Compacted Soil-Lime Mixtures, ASTM D 5102 Procedure B

Proj	ect	Inf	Ori	m	ati	10
------	-----	-----	-----	---	-----	----

Project: SESI Job # FC 2853-UT (C)

Client/Arch./Engr.: Scott Enviromental Services Inc: Longview, Texas

Contractor: Not Given

Job No.: C 6109-141

Sample Information

Location/Boring No: SESI Job # FC 2853-UT (C) Sample Date:

Sample No.: 12600 Depth:

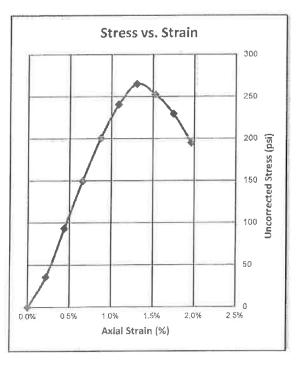
Material Origin: On Site

Sampling Info, provided By: Client

Material Description: Gray & Brown POBC-C

Sampled By: SESI

Technician: Todd Sliger


Test Date:

Test Data

Curing Method:

Sample moist cured at temperature of ~73 deg F for 7 days prior to conducting test.

7	ASTM D 1557	Molding Method:				
	8.0%	Optimum Moisture Content:				
рс	126	Maximum Density:				
	9.1%	Molded Moisture Content:				
рс	126.1	Molded Density:				
in	3.994	Diameter Before Curing:				
in	4.591	Height Before Curing:				
	1.149	H/D Ratio Before Curing:				
in	4.013	Diameter After Curing:				
in	4.589	Height After Curing:				
	1.144	H/D Ratio After Curing:				
in	12.65	Area After Curing:				
	0.904	H/D Correction Factor:				
lbs	15.0	Seating Load:				
lbs	3396	Compression Load:				
lbs	3411	Total Load:				
ps	0.0	Confining Pressure:				
ps	269.7	Maximum Stress:				
ps	239.6	Corrected Maximum Stress:				
	1.3%	Peak Strain:				
	Cylindrical	Failure Type:				
	()	1112				

Respectfully Submitted,

Hermann Walka, P.E.

Main Office:

1717 East Erwin Steet Tyler, Texas 75702

Longview Branch: Texarkana Branch: 707 West Cotton Street Longview, Texas 75604-5505

Arlington Branch:

210 Beech Street Texarkana, Arknsas 71854

2000 E. Randol Mill Rd. Suite 613 Arlington, Texas 76011

Phone: 903-595-4421 Fax: 903-595-6613

Phone: 903-758-0915 Fax: 903-758-8245 Phone: 870-772-0013 Fax: 870-216-2413

Phone:817-962-0048

WWW.ETTTLINC.COM

ETTL Engineers & Consultants Inc.

GEOTECHNICAL * MATERIALS * ENVIRONMENTAL * DRILLING * LANDFILLS

Hydraulic Conductivity Determination Flexible Wall Permeameter

	(M	ercury P	ermomete	r Test)	ASTM D 5	084, Meth	od E		
Project Informat		•		,					
	Project:	SESI Job	# FC 2853-	UT (C) Sci	ott Environm	nental Service	s, Longview	<u>l</u>	
Cli	ent/Arch./Engr.:	Scott Envir	onmental Se	ervices, Inc	., Longview,	Texas		-	
F	Project Location:	not given						-	
	Job No.:	C 6109-14	1						
Sample Informat	tion								
Locat	ion / Boring No:	FC 2853-U	T (C)				e:		
	Sample No.:	12	600	Depth (ft.)):	_ft.			
	Material Origin:	On Site							
Sampling In	fo. provided By:	Client							
Mate	rial Description:	Gray & Bro	wn POBC-C						
	Sampled By:	Client				_ Dat	,	8/22/2014	
	Technician:	H. Walka				-	Test Date:	10/21/2014	
Sample Data									
,	Initial Sample i	Data				Moisture C	ontent Dat	а	
	Wt: of Sample :		g		Before Tes			After Test	
*****	Diameter :		_9 in		Tare Wt:			Tare Wt:	133.50
	Length:		in	W	et Wt.+tare:		. V	et Wt.+tare:	752.70
	Area:		in ²		ry Wt.+tare:			ry Wt.+tare:	704.60
	Volume :		in ³		ory Wt. Soil:			Dry Wt. Soil:	571.10
	Unit Wt.(wet):	136.7	pcf		Water Wt.:		,	Water Wt.:	48.10
	Unit Wt.(dry):		pcf		% moist.:	8.3		% moist :	8.4
Assumed S	Specific Gravity:		-						
Calculate	d % saturation:	88.1				Molding	Properties		
\	/oid ratio (e) =	0.24	_	Molo	ling/Prepara	tion Method:		D 1557	
	Porosity (n)=	0.19			Max Dry [Density(pcf) =	126.0	OMC =	8.0
Mea	sured B-Value:	99.0	%		% of M	ax Density =	100.2	+/- OMC = _	0.3
3				LL		PI:		-200%:_	
Test Readings	Z ₁ (Mercury I	-leight Differ	ence @ t ₄):	5,1	cm	Hydraulic Gr	adient =	9.07	
		elapsed t	Z	ΛZp	temp	CL	k	k	
	Reading Date		(pipet @ t)	(cm)	(deg C)	(temp corr)	(cm/sec)	(ft./day)	
	10/21/2014	1447	5.7	0.959	25.0	0.889	5.85E-08	1,66E-04	
	10/04/0034	1044	F 0	4.050	25.0	0.000	5.76E 08	1 635 04	

B	elapsed t	Z	ΛZp	temp	Ct.	k (em/ess)	k (ft./day)
Reading Date	(seconds)	(pipet @ t)	(cm)	(deg C)	(temp corr)	(cm/sec)	(IL/Liay)
10/21/2014	1447	5.7	0.959	25.0	0,889	5.85E-08	1,66E-04
10/21/2014	1641	5.6	1.059	25.0	0.889	5.76E-08	1.63E-04
10/21/2014	1840	5,5	1,159	25.0	0.889	5.70E-08	1.62E-04

25.0

1.259

Summary Table								
Hydraulic conductivity	k =	5.73E-08	cm/sec	1.62E-04	ft/day			
Void Ratio	e =	0.24						
Porosity	n =	0.19						
Bulk Density	γ =	2.19	g/cm ³	136,7	pcf			
Water Content	W =	0.17	cm ³ /cm ³	(at 20 deg				
Intrinsic Permeability	k _{int} =	5.87E-13	cm	(at 20 deg				

Respectfully Submitted,

0.889

Hermann Walka, P.E.

Main Office: 1717 East Erwin Street Tyler, Texas 75702

10/21/2014

2052

5.4

Longview Branch: 707 West Cotton Street Longview, Texas 75604-5505 Texarkana Branch: 210 Beech Street Texarkana, Arkansas 71854

Arlington Branch: 2000 E. Randol Mill Rd. Suite 613 Arlington, Texas 76011

Page 1

Phone: 903-595-4421 Fax: 903-595-6613 Phone: 903-758-0915 Fax: 903-758-8245

5.62E-08

1.59E-04

Phone: 870-772-0013 Fax: 870-216-2413 Phone: 817-962-0048 Fax: 817-962-0025

WWW.ETTTLINC.COM

Ranch 16-10-3-3-2WH/ **Aubrey 1A-15-22-3-2WH** S2798-UT

GCO Labs, LLC 3505 West Loop 281 Longview, Texas 75604 903 / 291-0137 www.gco-labs.com

Customer:

J. Blake Scott

Scott Environmental Services, Inc.

P.O. Box 6215

Longview, Texas 75608

USA

Project: S2798-UT Cust. Sample: OBC-A

Lab ID: 140807J001

Collected; 8/2/2014

Received: 8/7/2014

Report Date: 8/22/2014

Analysis	Results	Units	Method	Date	Time	Tech	
Dry Sample (pH,EC and CEC)	Completed	Result	LA 29B	8/7/2014	9:37	fgo	
EC at Saturation	47.8	mmhos/cm	LA 29B	8/13/2014	15:50	fgo	
Electrical Conductance at 25 C	14.1	mmhos/cm	LA 29B	8/13/2014	15:50	fgo	
Hydrophobicity	Positive	Result	LA 29B	8/18/2014	11:29	fgo	
pH 1:1 aque(LA29B) @25C	9.5	SU	LA 29B	8/14/2014	9:55	fgo	
Sample Prep La - 29B	Completed	mL/g	LA 29B	8/11/2014	8:00	fgo	
Saturation Water Percentage (dried s	30	%	LA 29B	8/13/2014	16:10	fgo	
Sodium Adsorption Ratio	3.2	meg/meg	LA 29B	8/18/2014	11:14	fgo	
Soluble Cation Extraction	80/80	nL/g	LA 29B	8/12/2014	16:40	fgo	
Special Total Ba Metals Prep	500/0.1021	mL/g	LA 29B	8/13/2014	14:00	fgo	
Extraction (3-Day SESI)	50/5.06	mL/g	LA29B*Modified	8/7/2014	10:05	fgo	
Chloride (LA29 3D EXIC)	2,450	mg/kg	LA29B-Mod SESI	8/12/2014	10:20	fgo	
Free Alkalinity (Phenyl	2,500	mg/kg	SM 2320B	8/14/2014	11:58	fgo	
Total Solids for Dry Wt	90.6	%	SM 2540 G	8/7/2014	15:45	fgo	
Solid/Organic Metals Digestion	100/1.35	mL/g	SW-846 3050B	8/10/2014	13:50	fgo	
Arsenic	12.2	mg/kg	SW-846 6010B	8/14/2014	10:05	fgo	
Cadmium	< 2.50	mg/kg	SW-846 6010B	8/14/2014	10:05	fgo	
Calcium (Water Soluble)	163	meq/L	SW-846 6010B	8/14/2014	10:05	fgo	
Chromium	28.6	mg/kg	SW-846 6010B	8/14/2014	10:05	fgo	
Lead	13.9	mg/kg	SW-846 6010B	8/14/2014	10:05	fgo	
Magnesium (Water Soluble)	6.82	meq/L	SW-846 6010B	8/14/2014	10:05	fgo	
Selenium	< 2.50	mg/kg	SW-846 6010B	8/14/2014	10:05	fgo	
Silver	< 2.50	mg/kg	SW-846 6010B	8/14/2014	10:05	fgo	
Sodium (Water Soluble)	29.1	meq/L	SW-846 6010B	8/14/2014	10:05	fgo	
True Total Barium	163,000	mg/kg	SW-846 6010B	8/14/2014	10:24	fgo	
Zinc	31.6	mg/kg	SW-846 6010B	8/14/2014	10:05	fgo	
Mercury	0.0366	mg/kg	SW-846 7471A	8/18/2014	16:00	fgo	
Solid Metal Digestion Hg	100/1.4	mL/g	SW-846 7471A	8/11/2014	13:30	fgo	
Benzene	< 0.250	mg/kg	SW-846 8260B	8/21/2014	12:37	fgo	
VOC 5035 Extraction	10/10.1	mL/g	SW-846 8260B	8/12/2014	8:50	fgo	
Sulfate	2,070	mg/kg	Tex-620-J	8/12/2014	15:21	fgo	
Sulfate Extraction/Leaching	50/5.26	mL/g	Tex-620-J	8/11/2014	16:00	fgo	
1005 TPH Extraction Solid	10/10.0	mL/g	TNRCC TX 1005	8/11/2014	16:00	fgo	
C12 to C28 TPH	107,000	mg/kg	TNRCC TX 1005	8/11/2014	19:36	fgo	
C28 to C36 TPH	6,670	mg/kg	TNRCC TX 1005	8/11/2014	19:38	fgo	
C6 to C12 TPH	11,700	mg/kg	TNRCC TX 1005	8/11/2014	19:38	fgo	
C6 to C36 TPH	126,000	mg/kg	TNRCC TX 1005	8/11/2014	19:38	fgo	

Project: S2798-UT Page 1 of 6 Report: 140807J001

GCO Labs, LLC 3505 West Loop 281 Longview, Texas 75604 903 / 291-0137 www.gco-labs.com

Quality Control Data

Analyte	QC Parameter		Result U	Units	Reference Value		Units
Chloride	Blank	Method Blank	< 1.0 p	ppm			
	CCV1	Recovery	109 %	%	True Value	20	ppm
	CCV2	Recovery	94.8 %	%	True Value	10	ppm
	CCV3	Recovery	92.7 %	%	True Value	10	ppm
	Dup-A	A Reading	2,450 p	ppm			
	Dup-B	B Reading	2,520 p	ppm			
	Dup-RPD1	Relative% Difference	2.65 %	%			
	LCS	Recovery	87.9 %	%	Spike Amount	8	ppm
	LCSD	Recovery	88.1 %	%	Spike Amount	8	ppm
	LCS-RPD	Relative% Difference	0.284 %	%			
	MS	Recovery	92.9 %	%	Spike Amount	8	ppm
C6-C12 TPH	Blank	Method Blank	< 50 p	opm			
	CCV1	Recovery	95.6 %	%	True Value	1000	ppm
	CCV2	Recovery	107 %	%	True Value	1000	ppm
	Dup-A	A Reading	11,700 p	opm			
	Dup-B	B Reading	12,400 p	opm			
	Dup-RPD1	Relative% Difference	5.63 %	%			
	LCS	Recovery	93.7 %	%	Spike Amount	500	ppm
	LCSD	Recovery	99.4 %	%	Spike Amount	500	ppm
	LCS-RPD	Relative% Difference	5.98 %	%			
C12-C28 TPH	Blank	Method Blank	< 50 p	pm			
	CCV1	Recovery	97.6 %	%	True Value	1000	ppm
	CCV2	Recovery	113 %	%	True Value	1000	ppm
	Dup-A	A Reading	107,000 p	pm			
	Dup-B	B Reading	111,000 p	pm			
	Dup-RPD1	Relative% Difference	3 %	%			
	LCS	Recovery	90.9 %	%	Spike Amount	500	ppm
	LCSD	Recovery	87.3 %	%	Spike Amount	500	ppm
	LCS-RPD	Relative% Difference	4.03 %	%			
Benzene	Blank	Method Blank	< 0.0010 pp	pm			
	CCV1	Recovery	101 %	6	True Value	0.02	ppm
	LCS	Recovery	95.7 %	6	Spike Amount	0.02	ppm
	LCSD	Recovery	91.8 %	6	Spike Amount	0.02	ppm
	LCS-RPD	Relative% Difference	4.16 %	6			
Alkalinity	Dup-A	A Reading	2,500 pj	pm			
	Dup-B	B Reading	3,490 pj	pm			
	Dup-RPD1	Relative% Difference	33.1 %				
	LCS	Recovery	101 %	6	Spike Amount	50000	ppm
	LOS	Recovery	101 76	0	Spike Amount	50000	ppi

Project: S2798-UT Page 2 of 6 Report: 140807J001

Analyte	QC Parameter		Result	Units	Reference Value	Units
	LCSD	Recovery	101	%	Spike Amount	50000 ppm
	LCS-RPD	Relative% Difference	< 1.00	%		
Electrical Conductivity	Dup-A(EC)	Reading	14.13	mmhos/cm		
	Dup-B(EC)	Reading	13.98	mmhos/cm		
	Dup-RPD1	Relative% Difference	1.07	%		
	Standard1(EC)	Reading	1.455	mmhos/cm	True Value	1.412 mmho
	Standard1(EC)	Reading	13.31	mmhos/cm	True Value	12.9 mmho
	Standard2(EC)	Reading	1.44	mmhos/cm	True Value	1.412 mmho
	Standard2(EC)	Reading	13.02	mmhos/cm	True Value	12.9 mmho
SWP	Blank%	Method Blank	< 0.10	%		
	Dup-A%	A Reading	29.6	%		
	Dup-B%	B Reading	28.6	%		
	Dup-RPD1	Relative% Difference	3.45	%		
oH at 25 C	Dup-A(pH)	Reading	9.48	SU		
	Dup-B(pH)	Reading	9.5	SU		
	Dup-RPD1	Relative% Difference	0.211	%		
	pH 10 Buffer(1st)	Reading	10.02	SU	True Value	10 SU
	pH 10 Buffer(2nd)	=	9.99	SU	True Value	10 SU
	pH 7 Buffer(2nd)	Reading	6.96	SU	True Value	7 SU
Sulfate	Blank	Method Blank	< 0.10	ppm		
	CCV1	Recovery	107		True Value	40 ppm
	CCV2	Recovery	96.2	%	True Value	20 ppm
	CCV3	Recovery	96.5		True Value	20 ppm
	Dup-A	A Reading	2,070			
	Dup-B	B Reading	1,920			
	Dup-RPD1	Relative% Difference	7.34			
	LCS	Recovery	87		Spike Amount	8 ppm
	LCSD	Recovery	86.6		Spike Amount	8 ppm
	LCS-RPD	Relative% Difference	0.432		opino / illiouni	о ррш
	MS	Recovery	90.3		Spike Amount	8 ppm
Barium, True Total	Blank	Method Blank	< 0.25		opino / infount	Оррии
Danum, True Total	CCV2	Recovery	101		True Value	10 ppm
	CCV3	Recovery	101		True Value	10 ppm
	Dup-A	A Reading	163,000		Tide Value	то ррш
	Dup-B	B Reading	163,000			
	Dup-RPD1	Relative% Difference	0.342	•		
	ICV	_	95.7		True Value	5 ppm
Moroup		Recovery Method Blank	< 0.0020		The value	5 ppm
Mercury	Blank CCV1	Recovery	103		True Value	0.005 ppm
	CCV2	•	103		True Value	0.005 ppm
		Recovery				0.005 ppm
	LCS	Recovery	93.2 ° 105 °		Spike Amount	
	LCSD	Recovery			Spike Amount	0.005 ppm
	LCS-RPD	Relative% Difference	11.5		Cnika Amount	0.005.555
	MS	Recovery	94.2		Spike Amount	0.005 ppm
	MSD	Recovery	105 9		Spike Amount	0.005 ppm
	MS-RPD	Relative% Difference	10.6			
Arsenic	Blank	Method Blank	< 2.5	-	T 1/-1/	40
	CCV3	Recovery	100 9		True Value	10 ppm
	CCV4	Recovery	98.7	%	True Value	10 ppm

Analyte	QC Paramete	r	Result Units	Reference Value	Units
	ICV	Recovery	99.6 %	True Value	5 ppm
	LCS	Recovery	94.7 %	Spike Amount	0.5 ppm
	LCSD	Recovery	96.4 %	Spike Amount	0.5 ppm
	LCS-RPD	Relative% Difference	1.86 %		
	MS	Recovery	92.3 %	Spike Amount	0.5 ppm
	MSD	Recovery	95.4 %	Spike Amount	0.5 ppm
	MS-RPD	Relative% Difference	3.34 %		
Ca, water soluble	Blank	Method Blank	< 1.0 ppm		
	CCV1	Recovery	98.5 %	True Value	100 ppm
	CCV2	Recovery	100 %	True Value	100 ppm
	Dup-A	A Reading	3,270 ppm		
	Dup-B	B Reading	3,280 ppm		
	Dup-RPD1	Relative% Difference	0.213 %		
	ICV.	Recovery	95 %	True Value	50 ppm
Cadmium	Blank	Method Blank	< 2.5 ppm		
	CCV3	Recovery	101 %	True Value	5 ppm
	CCV4	Recovery	99 %	True Value	5 ppm
	ICV	Recovery	98.1 %	True Value	2.5 ppm
	LCS	Recovery	93.9 %	Spike Amount	0.25 ppm
	LCSD	Recovery	94.8 %	Spike Amount	0.25 ppm
	LCS-RPD	Relative% Difference	1.02 %		0.20 pp
	MS	Recovery	90.5 %	Spike Amount	0.25 ppm
	MSD	Recovery	89.8 %	Spike Amount	0.25 ppm
	MS-RPD	Relative% Difference	0.81 %	opino / infoant	0.20 pp
Chromium	Blank	Method Blank	< 2.5 ppm		
	CCV3	Recovery	100 %	True Value	10 ppm
	CCV4	Recovery	98 %	True Value	10 ppm
	ICV	Recovery	98.8 %	True Value	5 ppm
	LCS	Recovery	95.7 %	Spike Amount	0.5 ppm
	LCSD	Recovery	96.7 %	Spike Amount	0.5 ppm
	LCS-RPD	Relative% Difference	1.03 %	opino / infoant	ото ррт
	MS	Recovery	80.7 %	Spike Amount	0.5 ppm
	MSD	Recovery	83.8 %	Spike Amount	0.5 ppm
	MS-RPD	Relative% Difference	3.74 %	opino / mrodin	ото рртп
_ead	Blank	Method Blank	< 2.5 ppm		
	CCV3	Recovery	101 %	True Value	10 ppm
	CCV4	Recovery	99.1 %	True Value	10 ppm
	ICV	Recovery	97.7 %	True Value	5 ppm
	LCS	Recovery	94.3 %	Spike Amount	0.5 ppm
	LCSD	Recovery	95.8 %	Spike Amount	0.5 ppm
	LCS-RPD	Relative% Difference	1.59 %	Opine Amount	о.о ррш
	MS	Recovery	79.9 %	Spike Amount	0.5 ppm
	MSD	Recovery	86.8 %	Spike Amount	0.5 ppm
		·		Opike Amount	о.о ррпп
la water caluble	MS-RPD	Relative% Difference	8.27 %		
Mg, water soluble	Blank	Method Blank	< 1.0 ppm	True Volus	100
	CCV1	Recovery	98.9 %	True Value	100 ppm
	CCV2	Recovery	100 %	True Value	100 ppm
	Dup-A	A Reading	82.9 ppm		
	Dup-B	B Reading	82.1 ppm		

GCO Labs, LLC 3505 West Loop 281 Longview, Texas 75604 903 / 291-0137 www.gco-labs.com

	QC Parameter		Result	Units	Reference Value	Un
	Dup-RPD1	Relative% Difference	0.944	%		
	ICV	Recovery	101	%	True Value	50 ppi
Na, water soluble	Blank	Method Blank	< 1.0	ppm		
	CCV1	Recovery	99.1	%	True Value	100 ppi
	CCV2	Recovery	101	%	True Value	100 pp
	Dup-A	A Reading	670	ppm		
	Dup-B	B Reading	663	ppm		
	Dup-RPD1	Relative% Difference	1.1	%		
	ICV	Recovery	99.6	%	True Value	50 pp
Selenium	Blank	Method Blank	< 2.5	ppm		
	CCV3	Recovery	100	%	True Value	10 pp
	CCV4	Recovery	98.8	%	True Value	10 pp
	ICV	Recovery	99.8	%	True Value	5 pp
	LCS	Recovery	94	%	Spike Amount	0.5 pp
	LCSD	Recovery	94.5	%	Spike Amount	0.5 pp
	LCS-RPD	Relative% Difference	0.453	%		
	MS	Recovery	96.8	%	Spike Amount	0.5 pp
	MSD	Recovery	96.8	%	Spike Amount	0.5 pp
	MS-RPD	Relative% Difference	0.0458	%		
Silver	Blank	Method Blank	< 2.5	ppm		
	CCV3	Recovery	101	%	True Value	2 pp
	CCV4	Recovery	99.3	%	True Value	2 pp
	ICV	Recovery	102	%	True Value	1 pp
	LCS	Recovery	92.7	%	Spike Amount	0.1 pp
	LCSD	Recovery	88.8	%	Spike Amount	0.1 pp
	LCS-RPD	Relative% Difference	4.33	%		
	MS	Recovery	93.1	%	Spike Amount	0.1 pp
	MSD	Recovery	91.7	%	Spike Amount	0.1 pp
	MS-RPD	Relative% Difference	1.6	%		
inc.	Blank	Method Blank	< 2.5	ppm		
	CCV3	Recovery	101	%	True Value	10 pp
	CCV4	Recovery	98.8	%	True Value	10 pp
	ICV	Recovery	97.3	%	True Value	5 pp
	LCS	Recovery	93.2	%	Spike Amount	0.5 pp
	LCSD	Recovery	93.9	%	Spike Amount	0.5 pp
	LCS-RPD	Relative% Difference	0.833	%	·	
	MS	Recovery	88.3	%	Spike Amount	0.5 pp
	MSD	Recovery	101	%	Spike Amount	0.5 pp
	MS-RPD	Relative% Difference	13.1		·	
			< 0.10			
otal Solids	Blank%	Method Blank	~ 0.10	70		
otal Solids	Blank% Dup-A%					
otal Solids	Blank% Dup-A% Dup-B%	Method Blank A Reading B Reading	90.6	%		

Greg Oliver, Lab Manager

GCO Labs, LLC 3505 West Loop 281 Longview, Texas 75604 903 / 291-0137 www.gco-labs.com

8/1/149:30 P	Date: Time: F		Lab Use Only	Sampler Signiture	City: Longview	Address: P.O. Box 6215	Company: Scott Enviro	Report to: J. B. Scott	A BO
Signifuc Son Francis Commission Laboratory Approved by the Texas Railroad Commission	Relinquished by:	OBC-A	Field Identification		State: Texas	15	scott Environmental Services		3505 W. Loop 281 Longview, Texas 75604
Signifulg July I		41/2/8		me:	Zip: 7 5 6 0 8				
Affiliation: PH Scatt	Z	1 Solo 1	Time Matrix #Bottles		City: State:		Billing Address (if different):	Project name/Location:	Chain of Custody
Linde (1055	Received by:	140807J00	Notes	PO Number:	Zlp:			52798- WT	ody
Signiture:			kow # B	tine 1	Sa	linet e	7		greg_oliver@gco-labs. (903)291-0137 (903)452-1929
Amiliation: \(\langle (\langle \lang						eful	S	Analysis Request	co-labs.com 7 9

Project: S2798-UT Page 6 of 6 Report: 140807J001

Jorgensen 2-4-9-3-2WH S2763-UT

GCO Labs, LLC 3505 West Loop 281 Longview, Texas 75604 903 / 291-0137 www.gco-labs.com

Customer:

J. Blake Scott

Scott Environmental Services, Inc.

P.O. Box 6215

Longview, Texas 75608

USA

Project: **S2763-UT** Cust. Sample: **OBC-A**

Collected; 4/11/2014

Received: 4/16/2014

Lab ID: 140416Q003

Report Date: 4/22/2014

Analysis	Results	Units	Method	Date	Time	Tech
Dry Sample (pH,EC and CEC)	Completed	Result	LA 29B	4/16/2014	16:51	fgo
EC at Saturation	43.8	mho/cm	LA 29B	4/19/2014	14:15	fgo
Electrical Conductance at 25 C	13.7	mho/cm	LA 29B	4/19/2014	14:15	fgo
Hydrophobicity	Positive	Result	LA 29B	4/21/2014	9:46	fgo
pH 1:1 aque(LA29B) @25C	11.4	SU	LA 29B	4/17/2014	15:30	fgo
Sample Prep La - 29B	Completed	mL/g	LA 29B	4/21/2014	9:48	fgo
Saturation Water Percentage (dried s	31	%	LA 29B	4/19/2014	17:30	fgo
Sodium Adsorption Ratio	0.93	meq/meq	LA 29B	4/19/2014	14:51	fgo
Soluble Cation Extraction	80/80	mL/g	LA 29B	4/17/2014	17:10	fgo
Special Total Ba Metals Prep	500/0.1041	mL/g	LA 29B	4/17/2014	15:40	fgo
Extraction (3-Day SESI)	50/5.52	mL/g	LA29B*Modified	4/16/2014	17:20	fgo
Chloride (LA29 3D EXIC)	4,950	mg/kg	LA29B-Mod SESI	4/20/2014	0:17	fgo
Free Alkalinity (Phenyl	22,100	mg/kg	SM 2320B	4/17/2014	14:36	fgo
Total Solids for Dry Wt	88.1	%	SM 2540 G	4/19/2014	17:30	fgo
Solid/Organic Metals Digestion	100/1.35	mL/g	SW-846 3050B	4/17/2014	9:00	fgo
Arsenic	7.67	mg/kg	SW-846 6010B	4/19/2014	15:12	fgo
Cadmium	< 2.50	mg/kg	SW-846 6010B	4/19/2014	15:12	fgo
Calcium (Water Soluble)	134	meq/L	SW-846 6010B	4/19/2014	14:51	fgo
Chromium	19.9	mg/kg	SW-846 6010B	4/19/2014	15:12	fgo
Lead	9.21	mg/kg	SW-846 6010B	4/19/2014	15:12	fgo
Magnesium (Water Soluble)	< 1.00	meq/L	SW-846 6010B	4/19/2014	14:51	fgo
Selenium	< 2.50	mg/kg	SW-846 6010B	4/19/2014	15:12	fgo
Silver	< 2.50	mg/kg	SW-846 6010B	4/19/2014	15:12	fgo
Sodium (Water Soluble)	7.62	meq/L	SW-846 6010B	4/19/2014	14:51	fgo
True Total Barium	229,000	mg/kg	SW-846 6010B	4/19/2014	14:59	fgo
Zinc	39.6	mg/kg	SW-846 6010B	4/19/2014	15:12	fgo
Mercury	0.0361	mg/kg	SW-846 7471A	4/19/2014	17:39	fgo
Solid Metal Digestion Hg	100/0.56	mL/g	SW-846 7471A	4/17/2014	8:50	fgo
Benzene	< 0.0558	mg/kg	SW-846 8260B	4/21/2014	13:45	fgo
VOC 5035 Extraction	10/10.2	mL/g	SW-846 8260B	4/17/2014	8:03	fgo
Sulfate	1,430	mg/kg	Tex-620-J	4/19/2014	22:16	fgo
Sulfate Extraction/Leaching	50/5.53	mL/g	Tex-620-J	4/17/2014	10:28	fgo
1005 TPH Extraction Solid	10/10.2	m∐/g	TNRCC TX 1005	4/17/2014	7:59	fgo
C12 to C28 TPH	99,300	mg/kg	TNRCC TX 1005	4/17/2014	18:14	fgo
C28 to C36 TPH	3,790	mg/kg	TNRCC TX 1005	4/17/2014	18:14	fgo
C6 to C12 TPH	9,800	mg/kg	TNRCC TX 1005	4/17/2014	18:14	fgo
C6 to C36 TPH	113,000	mg/kg	TNRCC TX 1005	4/17/2014	18:14	fgo
	,	33				•

Project: S2763-UT Page 1 of 7 Report: 140416Q003

GCO Labs, LLC 3505 West Loop 281 Longview, Texas 75604 903 / 291-0137 www.gco-labs.com

Quality Control Data

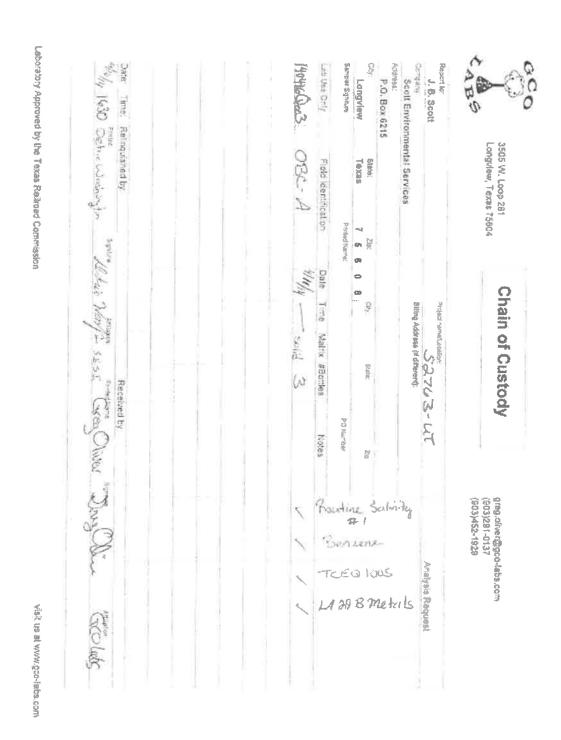
Analyte	QC Parameter		Result Units	Reference Value	Units
Chloride	Blank	Method Blank	< 1.0 ppm		
	CCV1	Recovery	102 %	True Value	20 ppm
	CCV2	Recovery	95.9 %	True Value	10 ppm
	CCV3	Recovery	96.8 %	True Value	10 ppm
	Dup-A	A Reading	27,100 ppm		
	Dup-B	B Reading	27,200 ppm		
	Dup-RPD1	Relative% Difference	0.425 %		
	LCS	Recovery	91.3 %	Spike Amount	8 ppm
	LCSD	Recovery	91.1 %	Spike Amount	8 ppm
	LCS-RPD	Relative% Difference	0.137 %		
	MS	Recovery	102 %	Spike Amount	8 ppm
C6-C12 TPH	Blank	Method Blank	< 50 ppm		
	CCV1	Recovery	107 %	True Value	1000 ppm
	CCV2	Recovery	106 %	True Value	1000 ppm
	Dup-A	A Reading	26,000 ppm		
	Dup-B	B Reading	24,600 ppm		
	Dup-RPD1	Relative% Difference	5.58 %		
	LCS	Recovery	105 %	Spike Amount	500 ppm
	LCSD	Recovery	101 %	Spike Amount	500 ppm
	LCS-RPD	Relative% Difference	4.3 %		
C12-C28 TPH	Blank	Method Blank	< 50 ppm		
	CCV1	Recovery	119 %	True Value	1000 ppm
	CCV2	Recovery	122 %	True Value	1000 ppm
	Dup-A	A Reading	172,000 ppm		
	Dup-B	B Reading	163,000 ppm		
	Dup-RPD1	Relative% Difference	5.12 %		
	LCS	Recovery	103 %	Spike Amount	500 ppm
	LCSD	Recovery	99.3 %	Spike Amount	500 ppm
	LCS-RPD	Relative% Difference	3.77 %		
Benzene	Blank	Method Blank	< 0.0010 ppm		
	CCV1	Recovery	108 %	True Value	0.02 ppm
	LCS	Recovery	103 %	Spike Amount	0.02 ppm
	LCSD	Recovery	103 %	Spike Amount	0.02 ppm
	LCS-RPD	Relative% Difference	0.631 %		• •
	MS	Recovery	102 %	Spike Amount	0.02 ppm
	MSD	Recovery	107 %	Spike Amount	0.02 ppm
	MS-RPD	Relative% Difference	4.44 %	•	

Project: S2763-UT Page 2 of 7 Report: 140416Q003

Analyte	QC Parameter		Result Un	its Reference Value	Units
Alkalinity	Dup-A	A Reading	56,200 ppr	n	
	Dup-B	B Reading	58,200 ppr	n	
	Dup-RPD1	Relative% Difference	3.62 %		
	LCS	Recovery	98.5 %	Spike Amount	50000 ppm
	LCSD	Recovery	96.5 %	Spike Amount	50000 ppm
	LCS-RPD	Relative% Difference	2.05 %		
Electrical Conductivity	Dup-A(EC)	Reading	72.5 mh	o/c	
	Dup-B(EC)	Reading	72.6 mh	o/c	
	Dup-RPD1	Relative% Difference	0.14 %		
	Standard1(EC)	Reading	12.99 mh	o/c True Value	12.9 mho/c
	Standard1(EC)	Reading	1.436 mh	o/c True Value	1.412 mho/c
	Standard2(EC)	Reading	12.94 mh	o/c True Value	12.9 mho/c
	Standard2(EC)	Reading	1.432 mh	o/c True Value	1.412 mho/c
SWP	Blank%	Method Blank	< 0.10 %		
	Dup-A%	A Reading	31.3 %		
	Dup-B%	B Reading	31 %		
	Dup-RPD1	Relative% Difference	1.1 %		
H at 25 C	Dup-A(pH)	Reading	11.74 SU		
	Dup-B(pH)	Reading	11.75 SU		
	Dup-RPD1	Relative% Difference	0.0851 %		
	pH 10 Buffer(1st)	Reading	10.03 SU	True Value	10 SU
	pH 10 Buffer(2nd)	=	10.05 SU	True Value	10 SU
	pH 7 Buffer(1st)	Reading	7.01 SU	True Value	7 SU
Sulfate	Blank	Method Blank	< 0.10 ppr	n	
	CCV1	Recovery	109 %	True Value	40 ppm
	CCV2	Recovery	93.5 %	True Value	20 ppm
	CCV3	Recovery	91.2 %	True Value	20 ppm
	Dup-A	A Reading	1,000 ppn	n	• • •
	Dup-B	B Reading	964 ppn		
	Dup-RPD1	Relative% Difference	4.16 %		
	LCS	Recovery	89.6 %	Spike Amount	8 ppm
	LCSD	Recovery	92.1 %	Spike Amount	8 ppm
	LCS-RPD	Relative% Difference	2.75 %	· · · · · · · · · · · · · · · · · · ·	
	MS	Recovery	90.6 %	Spike Amount	8 ppm
Barium, True Total	Blank	Method Blank	< 0.25 ppn	•	o pp
Janum, Truc Total	CCV1	Recovery	100 %	True Value	10 ppm
	CCV2	Recovery	101 %	True Value	10 ppm
	Dup-A	A Reading	57,000 ppn		, o pp
	Dup-B	B Reading	57,600 ppn		
	Dup-RPD1	Relative% Difference	1.15 %	•	
	ICV	Recovery	104 %	True Value	5 ppm
Mercury	Blank	Method Blank	< 0.00020 ppn		o pp
nercury	CCV1	Recovery	97 %	True Value	0.005 ppm
	CCV1	Recovery	97 %	True Value	0.005 ppm
	LCS	-	109 %	Spike Amount	0.005 ppm
	LCSD	Recovery	113 %	Spike Amount	0.005 ppm
		Recovery		Opine Amount	0.000 ppiii
	LCS-RPD	Relative% Difference	3.32 %		
	MS	Recovery	118 %	Spike Amount	0.005 ppm

Analyte	QC Paramete	T	Result Units	Reference Value	Units
	MS-RPD	Relative% Difference	0.0581 %		
Arsenic	Blank	Method Blank	< 2.5 ppm		
	CCV2	Recovery	98.7 %	True Value	10 ppm
	CCV3	Recovery	98.3 %	True Value	10 ppm
	ICV	Recovery	103 %	True Value	5 ppm
	LCS	Recovery	93.4 %	Spike Amount	0.5 ppm
	LCSD	Recovery	90.8 %	Spike Amount	0.5 ppm
	LCS-RPD	Relative% Difference	2.84 %		
	MS	Recovery	87.6 %	Spike Amount	0.5 ppm
	MSD	Recovery	89.5 %	Spike Amount	0.5 ppm
	MS-RPD	Relative% Difference	2.09 %		
Ca, water soluble	Blank	Method Blank	< 1.0 ppm		
	CCV1	Recovery	98.5 %	True Value	100 ppm
	CCV2	Recovery	98.1 %	True Value	100 ppm
	Dup-A	A Reading	3,800 ppm		
	Dup-B	B Reading	3,790 ppm		
	Dup-RPD1	Relative% Difference	0.326 %		
	ICV	Recovery	103 %	True Value	50 ppm
Cadmium	Blank	Method Blank	< 2.5 ppm		
	CCV2	Recovery	97.8 %	True Value	5 ppm
	CCV3	Recovery	96.5 %	True Value	5 ppm
	ICV	Recovery	102 %	True Value	2.5 ppm
	LCS	Recovery	91.7 %	Spike Amount	0.25 ppm
	LCSD	Recovery	88.8 %	Spike Amount	0.25 ppm
	LCS-RPD	Relative% Difference	3.21 %		
	MS	Recovery	81.9 %	Spike Amount	0.25 ppm
	MSD	Recovery	82.2 %	Spike Amount	0.25 ppm
	MS-RPD	Relative% Difference	0.299 %		
Chromium	Blank	Method Blank	< 2.5 ppm		
	CCV2	Recovery	98.9 %	True Value	10 ppm
	CCV3	Recovery	98.7 %	True Value	10 ppm
	ICV	Recovery	103 %	True Value	5 ppm
	LCS	Recovery	95.4 %	Spike Amount	0.5 ppm
	LCSD	Recovery	92.9 %	Spike Amount	0.5 ppm
	LCS-RPD	Relative% Difference	2.65 %		
	MS	Recovery	84.4 %	Spike Amount	0.5 ppm
	MSD	Recovery	80.7 %	Spike Amount	0.5 ppm
	MS-RPD	Relative% Difference	4.5 %		
Lead	Blank	Method Blank	< 2.5 ppm		
	CCV2	Recovery	97.9 %	True Value	10 ppm
	CCV3	Recovery	97.2 %	True Value	10 ppm
	ICV	Recovery	102 %	True Value	5 ppm
	LCS	Recovery	92.8 %	Spike Amount	0.5 ppm
	LCSD	Recovery	90.4 %	Spike Amount	0.5 ppm
	LCS-RPD	Relative% Difference	2.54 %	-1	lala
	MS	Recovery	86.5 %	Spike Amount	0.5 ppm
	MSD	Recovery	74.8 %	Spike Amount	0.5 ppm
	MS-RPD	Relative% Difference	14.5 %	- F	-io ppiii

Analyte	QC Paramete	r	Result Units	Reference Value	Un
Mg, water soluble	Blank	Method Blank	< 1.0 ppm		
	CCV1	Recovery	99.6 %	True Value	100 ppr
	CCV2	Recovery	98.6 %	True Value	100 ppr
	Dup-A	A Reading	0.499 ppm		
	Dup-B	B Reading	0.5 ppm		
	Dup-RPD1	Relative% Difference	0.104 %		
	ICV	Recovery	106 %	True Value	50 ppr
Na, water soluble	Blank	Method Blank	< 1.0 ppm		
	CCV1	Recovery	99.8 %	True Value	100 ppr
	CCV2	Recovery	99.4 %	True Value	100 ppr
	Dup-A	A Reading	2,070 ppm		
	Dup-B	B Reading	2,050 ppm		
	Dup-RPD1	Relative% Difference	1.01 %		
	ICV	Recovery	105 %	True Value	50 ррг
Selenium	Blank	Method Blank	< 2.5 ppm		
	CCV2	Recovery	98.8 %	True Value	10 ppr
	CCV3	Recovery	97.6 %	True Value	10 ppr
	ICV	Recovery	105 %	True Value	5 ppr
	LCS	Recovery	90.4 %	Spike Amount	0.5 ppr
	LCSD	Recovery	87.3 %	Spike Amount	0.5 ppr
	LCS-RPD	Relative% Difference	3.51 %		, ,
	MS	Recovery	87.6 %	Spike Amount	0.5 ppr
	MSD	Recovery	83.2 %	Spike Amount	0.5 ppr
	MS-RPD	Relative% Difference	5.26 %	•	
Silver	Blank	Method Blank	< 2.5 ppm		
	CCV2	Recovery	99.9 %	True Value	2 ppr
	CCV3	Recovery	99.9 %	True Value	2 ppr
	ICV	Recovery	96.4 %	True Value	1 ppn
	LCS	Recovery	95 %	Spike Amount	0.1 ppn
	LCSD	Recovery	91.6 %	Spike Amount	0.1 ppn
	LCS-RPD	Relative% Difference	3.64 %	•	• • • • • • • • • • • • • • • • • • • •
	MS	Recovery	92.8 %	Spike Amount	0.1 ppn
	MSD	Recovery	90.8 %	Spike Amount	0.1 ppn
	MS-RPD	Relative% Difference	2.18 %		
Zinc	Blank	Method Blank	< 2.5 ppm		
	CCV2	Recovery	96.9 %	True Value	10 ppn
	CCV3	Recovery	95.6 %	True Value	10 ppn
	ICV	Recovery	102 %	True Value	5 ppn
	LCS	Recovery	90.8 %	Spike Amount	0.5 ppn
	LCSD	Recovery	88.5 %	Spike Amount	0.5 ppn
	LCS-RPD	Relative% Difference	2.57 %	орино / ингозин	0.0 pp
	MS	Recovery	77.6 %	Spike Amount	0.5 ppn
	MSD	Recovery	71.9 %	Spike Amount	0.5 ppn
	MS-RPD	Relative% Difference	7.65 %	Spino / infount	0.0 ppii
Fotal Solids	Blank%	Method Blank	< 0.10 %		
i otal Golida	Dup-A%	A Reading	85.6 %		
	Dup-A % Dup-B%	B Reading	85.3 %		
	Dup-D 76	D INEauling	00.0 /0		


GCO Labs, LLC 3505 West Loop 281 Longview, Texas 75604 903 / 291-0137 www.gco-labs.com

Approved by	Drog Oliver	
	Greg Oliver, Lab Manager	Т

Project: S2763-UT Page 6 of 7 Report: 140416Q003

GCO Labs, LLC 3505 West Loop 281 Longview, Texas 75604 903 / 291-0137 www.gco-labs.com

Project: S2763-UT Page 7 of 7 Report: 140416Q003

Perank 13-10-3-3-3WH S2785-UT

GCO Labs, LLC 3505 West Loop 281 Longview, Texas 75604 903 / 291-0137 www.gco-labs.com

Customer:

J. Blake Scott

Scott Environmental Services, Inc.

P.O. Box 6215

Longview, Texas 75608

USA

Project: **S2785-UT** Cust. Sample: **OBC-A**

Collected; 4/10/2014

Received: 4/16/2014

Lab ID: 140416Q004

Report Date: 4/22/2014

Analysis	Results	Units	Method	Date	Time	Tech
						_
Dry Sample (pH,EC and CEC)	Completed	Result	LA 29B	4/16/2014	16:51	fgo
EC at Saturation	46.3	mho/cm	LA 29B	4/22/2014	9:33	fgo
Electrical Conductance at 25 C	13.3	mho/cm	LA 29B	4/22/2014	9:33	fgo
Hydrophobicity	Positive	Result	LA 29B	4/21/2014	9:46	fgo
pH 1:1 aque(LA29B) @25C	11.3	SU	LA 29B	4/21/2014	12:55	fgo
Sample Prep La - 29B	Completed	m∐g	LA 29B	4/21/2014	9:48	fgo
Saturation Water Percentage (dried s	29	%	LA 29B	4/21/2014	16:00	fgo
Sodium Adsorption Ratio	1.9	meq/meq	LA 29B	4/22/2014	11:31	fgo
Soluble Cation Extraction	80/80	m∐g	LA 29B	4/21/2014	12:23	fgo
Special Total Ba Metals Prep	500/0.1112	mL/g	LA 29B	4/21/2014	12:45	fgo
Extraction (3-Day SESI)	50/5.86	m∐⁄g	LA29B*Modified	4/16/2014	17:20	fgo
Chloride (LA29 3D EXIC)	3,950	mg/kg	LA29B-Mod SESI	4/20/2014	0:29	fgo
Free Alkalinity (Phenyl	4,250	mg/kg	SM 2320B	4/21/2014	13:11	fgo
Total Solids for Dry Wt	91.9	%	SM 2540 G	4/19/2014	17:30	fgo
Solid/Organic Metals Digestion	100/1.40	mL/g	SW-846 3050B	4/17/2014	9:00	fgo
Arsenic	6.29	mg/kg	SW-846 6010B	4/19/2014	15:12	fgo
Cadmium	< 2.50	mg/kg	SW-846 6010B	4/19/2014	15:12	fgo
Calcium (Water Soluble)	146	meq/L	SW-846 6010B	4/22/2014	11:30	fgo
Chromium	23.4	mg/kg	SW-846 6010B	4/19/2014	15:12	fgo
_ead	14.0	mg/kg	SW-846 6010B	4/19/2014	15:12	fgo
Magnesium (Water Soluble)	< 1.00	meq/L	SW-846 6010B	4/22/2014	11:30	fgo
Selenium	< 2.50	mg/kg	SW-846 6010B	4/19/2014	15:12	fgo
Silver	< 2.50	mg/kg	SW-846 6010B	4/19/2014	15:12	fgo
Sodium (Water Soluble)	16.0	meq/L	SW-846 6010B	4/22/2014	11:30	fgo
True Total Barium	171,000	mg/kg	SW-846 6010B	4/22/2014	10:56	fgo
Zinc	50.3	mg/kg	SW-846 6010B	4/19/2014	15:12	fgo
Mercury	0.0511	mg/kg	SW-846 7471A	4/19/2014	17:39	fgo
Solid Metal Digestion Hg	100/0.58	m∐g	SW-846 7471A	4/17/2014	8:50	fgo
Benzene	< 0.0596	mg/kg	SW-846 8260B	4/21/2014	13:45	fgo
VOC 5035 Extraction	10/10.0	mL/g	SW-846 8260B	4/17/2014	8:03	fgo
Sulfate	1,270	mg/kg	Tex-620-J	4/19/2014	22:29	fgo
Sulfate Extraction/Leaching	50/5.48	mL/g	Tex-620-J	4/17/2014	10:28	fgo
1005 TPH Extraction Solid	10/10.2	mL/g	TNRCC TX 1005	4/17/2014	7:59	fgo
C12 to C28 TPH	145,000	mg/kg	TNRCC TX 1005	4/17/2014	18:45	fgo
C28 to C36 TPH	4,270	mg/kg	TNRCC TX 1005	4/17/2014	18:45	fgo
C6 to C12 TPH	10,000	mg/kg	TNRCC TX 1005	4/17/2014	18:45	fgo
C6 to C36 TPH	159,000	mg/kg	TNRCC TX 1005	4/17/2014	18:45	fgo

Project: S2785-UT Page 1 of 7 Report: 140416Q004

GCO Labs, LLC 3505 West Loop 281 Longview, Texas 75604 903 / 291-0137 www.gco-labs.com

Quality Control Data

Analyte	QC Parameter		Result Units	Reference Value	Units
Chloride	Blank	Method Blank	< 1.0 ppm		
	CCV1	Recovery	102 %	True Value	20 ppm
	CCV2	Recovery	95.9 %	True Value	10 ppm
	CCV3	Recovery	96.8 %	True Value	10 ppm
	Dup-A	A Reading	27,100 ppm		
	Dup-B	B Reading	27,200 ppm		
	Dup-RPD1	Relative% Difference	0.425 %		
	LCS	Recovery	91.3 %	Spike Amount	8 ppm
	LCSD	Recovery	91.1 %	Spike Amount	8 ppm
	LCS-RPD	Relative% Difference	0.137 %		
	MS	Recovery	102 %	Spike Amount	8 ppm
C6-C12 TPH	Blank	Method Blank	< 50 ppm		
	CCV1	Recovery	107 %	True Value	1000 ppm
	CCV2	Recovery	106 %	True Value	1000 ppm
	Dup-A	A Reading	26,000 ppm		
	Dup-B	B Reading	24,600 ppm		
	Dup-RPD1	Relative% Difference	5.58 %		
	LCS	Recovery	105 %	Spike Amount	500 ppm
	LCSD	Recovery	101 %	Spike Amount	500 ppm
	LCS-RPD	Relative% Difference	4.3 %		
C12-C28 TPH	Blank	Method Blank	< 50 ppm		
	CCV1	Recovery	119 %	True Value	1000 ppm
	CCV2	Recovery	122 %	True Value	1000 ppm
	Dup-A	A Reading	172,000 ppm		
	Dup-B	B Reading	163,000 ppm		
	Dup-RPD1	Relative% Difference	5.12 %		
	LCS	Recovery	103 %	Spike Amount	500 ppm
	LCSD	Recovery	99.3 %	Spike Amount	500 ppm
	LCS-RPD	Relative% Difference	3.77 %	•	
Benzene	Blank	Method Blank	< 0.0010 ppm		
	CCV1	Recovery	108 %	True Value	0.02 ppm
	LCS	Recovery	103 %	Spike Amount	0.02 ppm
	LCSD	Recovery	103 %	Spike Amount	0.02 ppm
	LCS-RPD	Relative% Difference	0.631 %	•	
	MS	Recovery	102 %	Spike Amount	0.02 ppm
	MSD	Recovery	107 %	Spike Amount	0.02 ppm
	MS-RPD	Relative% Difference	4.44 %		

Project: S2785-UT Page 2 of 7 Report: 140416Q004

Analyte	QC Parameter		Result Units	Reference Value	Units
Alkalinity	Dup-A	A Reading	7,010 ppm		
	Dup-B	B Reading	8,060 ppm		
	Dup-RPD1	Relative% Difference	13.9 %		
	LCS	Recovery	100 %	Spike Amount	50000 ppm
	LCSD	Recovery	101 %	Spike Amount	50000 ppm
	LCS-RPD	Relative% Difference	0.995 %		
Electrical Conductivity	Dup-A(EC)	Reading	64.5 mho/c		
	Dup-B(EC)	Reading	63.2 mho/c		
	Dup-RPD1	Relative% Difference	2.04 %		
	Standard1(EC)	Reading	13 mho/c	True Value	12.9 mho/c
	Standard1(EC)	Reading	1.439 mho/c	True Value	1.412 mho/c
	Standard2(EC)	Reading	1.44 mho/c	True Value	1.412 mho/c
	Standard2(EC)	Reading	12.95 mho/c	True Value	12.9 mho/c
SWP	Blank%	Method Blank	< 0.10 %		
	Dup-A%	A Reading	47.9 %		
	Dup-B%	B Reading	48.4 %		
	Dup-RPD1	Relative% Difference	1.01 %		
pH at 25 C	Dup-A(pH)	Reading	10.87 SU		
	Dup-B(pH)	Reading	10.49 SU		
	Dup-RPD1	Relative% Difference	3.56 %		
	pH 10 Buffer(1st)	Reading	10.01 SU	True Value	10 SU
	pH 10 Buffer(2nd)	Reading	10.05 SU	True Value	10 SU
	pH 7 Buffer(2nd)	Reading	7.05 SU	True Value	7 SU
Sulfate	Blank	Method Blank	< 0.10 ppm		
	CCV1	Recovery	109 %	True Value	40 ppm
	CCV2	Recovery	93.5 %	True Value	20 ppm
	CCV3	Recovery	91.2 %	True Value	20 ppm
	Dup-A	A Reading	1,000 ppm		
	Dup-B	B Reading	964 ppm		
	Dup-RPD1	Relative% Difference	4.16 %		
	LCS	Recovery	89.6 %	Spike Amount	8 ppm
	LCSD	Recovery	92.1 %	Spike Amount	8 ppm
	LCS-RPD	Relative% Difference	2.75 %		
	MS	Recovery	90.6 %	Spike Amount	8 ppm
Barium, True Total	Blank	Method Blank	< 0.0050 ppm		
	CCV1	Recovery	101 %	True Value	10 ppm
	CCV2	Recovery	99.9 %	True Value	10 ppm
	Dup-A	A Reading	90,800 ppm		
	Dup-B	B Reading	92,600 ppm		
	Dup-RPD1	Relative% Difference	1.97 %		
	ICV	Recovery	102 %	True Value	5 ppm
Mercury	Blank	Method Blank	< 0.00020 ppm		
,	CCV1	Recovery	97 %	True Value	0.005 ppm
	CCV2	Recovery	97 %	True Value	0.005 ppm
	LCS	Recovery	109 %	Spike Amount	0.005 ppm
	LCSD	Recovery	113 %	Spike Amount	0.005 ppm
	LCS-RPD	Relative% Difference	3.32 %	•	
	MS	Recovery	118 %	Spike Amount	0.005 ppm
	MSD	Recovery	118 %	Spike Amount	0.005 ppm

Analyte	QC Paramete	r	Result Units	Reference Value	Units
	MS-RPD	Relative% Difference	0.0581 %		
Arsenic	Blank	Method Blank	< 2.5 ppm		
	CCV2	Recovery	98.7 %	True Value	10 ppm
	CCV3	Recovery	98.3 %	True Value	10 ppm
	ICV	Recovery	103 %	True Value	5 ppm
	LCS	Recovery	93.4 %	Spike Amount	0.5 ppm
	LCSD	Recovery	90.8 %	Spike Amount	0.5 ppm
	LCS-RPD	Relative% Difference	2.84 %		
	MS	Recovery	87.6 %	Spike Amount	0.5 ppm
	MSD	Recovery	89.5 %	Spike Amount	0.5 ppm
	MS-RPD	Relative% Difference	2.09 %		
Ca, water soluble	Blank	Method Blank	< 1.0 ppm		
	CCV1	Recovery	103 %	True Value	100 ppm
	CCV2	Recovery	99.3 %	True Value	100 ppm
	Dup-A	A Reading	16,200 ppm		
	Dup-B	B Reading	16,000 ppm		
	Dup-RPD1	Relative% Difference	1.48 %		
	ICV	Recovery	103 %	True Value	50 ppm
Cadmium	Blank	Method Blank	< 2.5 ppm		
Cadmium	CCV2	Recovery	97.8 %	True Value	5 ppm
	CCV3	Recovery	96.5 %	True Value	5 ppm
	ICV	Recovery	102 %	True Value	2.5 ppm
	LCS	Recovery	91.7 %	Spike Amount	0.25 ppm
	LCSD	Recovery	88.8 %	Spike Amount	0.25 ppm
	LCS-RPD	Relative% Difference	3.21 %		[
	MS	Recovery	81.9 %	Spike Amount	0.25 ppm
	MSD	Recovery	82.2 %	Spike Amount	0.25 ppm
	MS-RPD	Relative% Difference	0.299 %		5.25 pp
Chromium	Blank	Method Blank	< 2.5 ppm		
Sin oimain	CCV2	Recovery	98.9 %	True Value	10 ppm
	CCV3	Recovery	98.7 %	True Value	10 ppm
	ICV	Recovery	103 %	True Value	5 ppm
	LCS	Recovery	95.4 %	Spike Amount	0.5 ppm
	LCSD	Recovery	92.9 %	Spike Amount	0.5 ppm
	LCS-RPD	Relative% Difference	2.65 %	Opine / intodite	о.о ррш
	MS	Recovery	84.4 %	Spike Amount	0.5 ppm
	MSD	Recovery	80.7 %	Spike Amount	0.5 ppm
	MS-RPD	Relative% Difference	4.5 %	Opike Amount	о.о ррпп
₋ead	Blank	Method Blank	< 2.5 ppm		
-cau	CCV2		97.9 %	True Value	10 ppm
	CCV2	Recovery	97.9 % 97.2 %	True Value	10 ppm
	ICV	Recovery	97.2 % 102 %	True Value	
		Recovery		Spike Amount	5 ppm
	LCS	Recovery	92.8 %	•	0.5 ppm
	LCSD	Recovery	90.4 %	Spike Amount	0.5 ppm
	LCS-RPD	Relative% Difference	2.54 %	Cuileo Amarina	0.5
	MS	Recovery	86.5 %	Spike Amount	0.5 ppm
	MŞD	Recovery	74.8 %	Spike Amount	0.5 ppm

Analyte	QC Parameter		Result Units	Reference Value	Unit
Mg, water soluble	Blank	Method Blank	< 1.0 ppm		
	CCV1	Recovery	103 %	True Value	100 ppm
	CCV2	Recovery	98.9 %	True Value	100 ppm
	Dup-A	A Reading	4.98 ppm		
	Dup-B	B Reading	4.99 ppm		
	Dup-RPD1	Relative% Difference	0.303 %		
	ICV	Recovery	105 %	True Value	50 ppm
Na, water soluble	Blank	Method Blank	< 1.0 ppm		
	CCV1	Recovery	100 %	True Value	100 ppm
	CCV2	Recovery	101 %	True Value	100 ppm
	Dup-A	A Reading	685 ppm		
	Dup-B	B Reading	616 ppm		
	Dup-RPD1	Relative% Difference	10.6 %		
	ICV	Recovery	106 %	True Value	50 ppm
Selenium	Blank	Method Blank	< 2.5 ppm		
	CCV2	Recovery	98.8 %	True Value	10 ppm
	CCV3	Recovery	97.6 %	True Value	10 ppm
	ICV	Recovery	105 %	True Value	5 ppm
	LCS	Recovery	90.4 %	Spike Amount	0.5 ppm
	LCSD	Recovery	87.3 %	Spike Amount	0.5 ppm
	LCS-RPD	Relative% Difference	3.51 %		
	MS	Recovery	87.6 %	Spike Amount	0.5 ppm
	MSD	Recovery	83.2 %	Spike Amount	0.5 ppm
	MS-RPD	Relative% Difference	5.26 %		
Silver	Blank	Method Blank	< 2.5 ppm		
llver	CCV2	Recovery	99.9 %	True Value	2 ppm
	CCV3	Recovery	99.9 %	True Value	2 ppm
	ICV	Recovery	96.4 %	True Value	1 ppm
	LCS	Recovery	95 %	Spike Amount	0.1 ppm
	LCSD	Recovery	91.6 %	Spike Amount	0.1 ppm
	LCS-RPD	Relative% Difference	3.64 %		
	MS	Recovery	92.8 %	Spike Amount	0.1 ppm
	MSD	Recovery	90.8 %	Spike Amount	0.1 ppm
	MS-RPD	Relative% Difference	2.18 %		
Zinc	Blank	Method Blank	< 2.5 ppm		
	CCV2	Recovery	96.9 %	True Value	10 ppm
	CCV3	Recovery	95.6 %	True Value	10 ppm
	ICV	Recovery	102 %	True Value	5 ppm
	LCS	Recovery	90.8 %	Spike Amount	0.5 ppm
	LCSD	Recovery	88.5 %	Spike Amount	0.5 ppm
	LCS-RPD	Relative% Difference	2.57 %	•	
	MS	Recovery	77.6 %	Spike Amount	0.5 ppm
	MSD	Recovery	71.9 %	Spike Amount	0.5 ppm
	MS-RPD	Relative% Difference	7.65 %	•	• • • • • • • • • • • • • • • • • • • •
Total Solids	Blank%	Method Blank	< 0.10 %		
	Dup-A%	A Reading	85.6 %		
	Dup-B%	B Reading	85.3 %		
	Dup-RPD1	Relative% Difference	0.344 %		

GCO Labs, LLC 3505 West Loop 281 Longview, Texas 75604 903 / 291-0137 www.gco-labs.com

Approved by	Drag Oliver	
	Greg Oliver, Lab Manager	

Project: S2785-UT Page 6 of 7 Report: 140416Q004

GCO Labs, LLC 3505 West Loop 281 Longview, Texas 75604 903 / 291-0137 www.gco-labs.com

Date: Time Rel	H-70-11-0.51	Lab Use Only	Sander Striken	melygnou	P.O. Box 6215	Scott Environ	Report in	ABO OC
Date: Time Retraushed by: Why 1030 Det it Listing 'L some	084	Field Identification	Printed Name	State: Zip:		Scott Environmental Services		3505 W. Loop 281 Longview, Texas 75604
Addition of the second	4/10/m - Sid 3	Date Time Vatix #Bottles	-10	S O S CON		Billing Appless of principals	S2785-W	Chain of Custody
Received by	A Alexandria in	Notes	PO Xbmco:	Žþr.			172-5	Y
Die of Olice	A Commence of the Commence of	B	enz EG	ene.	15		Analysis Request	grag.oliver@gco-labs.com (903)291-0137 (903)452-1929
E CONTRACTOR OF THE CONTRACTOR	· v > v v v v v v v v v v v v v v v v v						dreat	

Project: S2785-UT Page 7 of 7 Report: 140416Q004

Form 3160-4 (March 2012)

UNITED STATES DEPARTMENT OF THE INTERIOR

FORM APPROVED

						LAND MA													004-0137 er 31, 2014
	W	ELL	COM	PLETIC	ON OR F	RECOMPLE	ETIOI	N REP	ORT	AND L	.OG				5. Le		rial No.		
la. Type of	Well	V	Oil Well		Gas Well	Dry	Oth	er							6. If	Indian,	Allottee or	Trib	e Name
			Other: _		Work Over	Deepen [⊸ Plug	g Back	□ Diff	f. Resvr.	•				7. Ur	nit or C	'A Agreeme	nt Na	ame and No.
2. Name of NEWFIELI	Operator D PRODU	CTIC	N COM	1PANY											8. Le	ase Na	me and We 5-10-3-3-2	ll No	//\//
3. Address	ROUTE #3 E		30					3a.	Phone 1:435-6	No. (incl	ude are	ra code)		9. Al	PI Wel	l No.		
4. Location			ocation o	clearly an	d in accord	lance with Fede	ral req			40-372					10. F	13-52 'ield an	d Pool or E	xplor	ratory
At surfac	368' FS	L 231	1' FFI	(SW/SF) SEC 10	T3S R2W								-			YTON BE		
	000 1 0			(011.02	, 020 10	10011211									S	urvey	or Area	1000 10 T	3S R2W
At top pro	d. interval	reporte	d below	660' FS	SL 1989' F	EL (SW/SE)	SEC	10 T3S	R2W								or Parish		13. State
At total de	544' l	FNL 1	997' FE	EL (NW/	NE) SEC	3 T3S 2W									DUC	HESI	NE		UT
14. Date Sp 08/24/201	udded			5. Date T	D. Reache	d		16. Da	ate Comp								ons (DF, RE	KB, R	L T, GL)*
18. Total De		19		12/22/20		ıg Back T.D.:	MD		D&A		Ready to 20. De			Plug Se		MD	5373' KB	_	
21. Type El		D 96		Logs Run	(Submit cor	ov of each)	TVD				22. W				Т	VD	Yes (Subm	it one	desira
DUAL IND	GRD, SF	, co	MP. NE	UTRON	I, GR, CAI	LIPER, CMT	BOND)			w	as DS	Γrun'.	?	✓ No		Yes (Subm Yes (Subm	it rep	ort)
23. Casing	V - 11 1		77 00 0					Stage Cer		No							res (suom	r	
Hole Size	Size/Gr	_	Wt. (#/f		op (MD)	Bottom (MI	D)	Dep			of Sks. of Cem		5	lurry Vo (BBL)	1.	Cen	nent Top*		Amount Pulled
19-1/2" 12-5/8"	13-3/8" 9-5/8" N	$\overline{}$	54.50	0,		1656'						ASS G							
12-5/6	9-5/8 N	-80	40.00	10		8531'	-				Varice	-			-			_	
8-7/8"	5-1/2" P	-110	20	0'		19027'	-					candacem Clastiseal			-			-	
						1.002				21001	LIGGRIG	Cai			\dashv				
24. Tubing Size	Record Depth :	Set (M	D) P	acker Dep	th (MD) T	Size		Depth Set	(MD) I	Dookor	Depth (1	MINI		Circ		D.,,	al- Car (MID)	_	D. L. D. d. o.m.
State	Bepin	set (iv	1.	acker Dep	tii (tvii)	312.0	+	Jepin set	(MD)	racker	Deptii (r	(VII)		Size	\dashv	Бері	th Set (MD)	+	Packer Depth (MD)
25. Produci	ng Intervals Formation			1 7	`~!	D -41	26.		oration I										
A) WASAT		11		9680'	.`op	Bottom 18,066'	96	180' - 18	orated In 8066' M			0.38	size	92	No. H 27	oles		Pe	erf. Status
B)							1		0000 11		\neg	0.00		- 02					
C)																			
D)																			
27. Acid, Fr	acture, Tre Depth Inter		, Cemen	t Squeeze	, etc.					Amount :	and The								
9680' - 180		vai		Frac w	/ 5,153,49	0#s of proppa	ant sa	nd in 10							s			-	
														3					
20 Decelor	lan Intern	.1 A																	
28. Product Date First		Hours	Те	st	Oil	Gas	Water		Oil Grav	itv	Gas		I	Producti	ion Me	ethod			
Produced		Teste	d Pro	oduction	BBL	MCF	BBL		Corr. AI	ų.	Gra		- 1						
2/23/15	3/3/15	24			863	681	499							FLOW	ING				
Choke Size	Tbg. Press. Flwg.	Csg. Press.		Hr. te	Oil BBL	Gas MCF	Water BBL		Gas/Oil Ratio		Wel	ll Statı	IS						
	SI			→							PR	RODU	CIN	G					
28a. Produc					187.	To .	L						- 64						
Date First Produced	Test Date	Hours Tested		oduction	Oil BBL	Gas MCF	Water BBL		Oil Grav Corr. Al		Gas Gra	vity	1	Producti	ion Me	ethod			
Choke	Tbg. Press.			Hr.	Oil	Gas	Water	-	Gas/Oil		Wel	II Statı	ıs						
Size	Flwg. SI	Press.	Ra	te	BBL.	MCF	BBL		Ratio										

^{*(}See instructions and spaces for additional data on page 2)

28b. Proc	luction - Inte	erval C								
Date First Produced	Test Date	Hours	Test	Oil	Gas	Water	Oil Gravity	Gas	Production Method	
Froduced		Tested	Production	BBL	MCF	BBL	Corr. API	Gravity	roduction wethod	
Choke Size	Tbg. Press.		24 Hr.	Oil	Gas	Water	Gas/Oil	Well Status		
Size	SI	Press.	Rate	BBL	MCF	BBL	Ratio			
28c. Prod	uction - Inte	rvai D								
Date First	Test Date	Hours	Test	Oil	Gas	Water	Oil Gravity	Gas	Production Method	
Production BBL MCF BBL Corr. API Caracteristic Car										
							Gas/Oil	Well Status		
5120		riess.	Rate	BBL	MCF	BBL	Ratio			
29 Disnos	sition of Gas	(Solid w	and four five I							
D.bpo.	ation of Gus	i joona, ns	sea jor juei, vei	неа, екс.)						
30. Summ	ary of Poro	us Zones	(Include Aquit	cama).						
			_							
Show a including	ll important	zones of p	orosity and co	ntents the	reof: Cored	intervals and all	l drill-stem tests,	GEOLOG	ICAL MARKERS	
recover	ies.	or var tester	u, cusmon use	ı, time too	ol open, flowi	ng and shut-in	pressures and			
Form	nation	Тор	Bottom		Desc	rintions Conta	nts ata			Тор
						arptions, conte	nts, etc.		Name	
								GARDEN GU	LCH MARK	<u> </u>
				1						
										8528'
								UTELAND BU	TTE	
	Production - Interval D First Test Date Hours Tested Tested BBL MCF BBL Corr. API Gravity GBL Corr. API Gravity St Gravity GBL Corr. API Gravity St Gravity Gr									
	1									
			1							
2 Additio		C - 1 1								
32. Additio	nai remarks	(include p	olugging proce	dure):						
וא וווטווטכב	oducing in	tervai: 1	468' FNL 19	85' FEL	(SW/NE) S	EC 3 T3S 2W	1			
Indicate	which items	s have bee	n attached by p	olacing a	check in the a	ppropriate boxe	es:			
Electri	ical/Mechani	cal Logs (1	full set req'd.)		Па	eologic Report	Deta		-	
			nd cement verif	cation		ore Analysis	DST Rep	-	Directional Survey	
						-	Uner:	Drilling daily act	tivity	
increby	ceruiy mat	uic iorego	ing and attache ther Calder	ed inform	ation is comp	lete and correct			ords (see attached instructions)*	
	- 1/	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	,			_	Title Regulatory	Technician		_
Sign	ature	Jean	ir Calo	0.1			Date 03/25/2015			
itle 10 II o	C Costi ·	001 :-	2.1 10							
lse, fictition	c. Section 1 us or fraudul	our and T ent statem	itle 43 U.S.C. lents or represe	Section 1	212, make it a	er within its jur	person knowingly a	nd willfully to ma	ake to any department or agency of	of the United States any
Continued o							iodictioli,			
										(Farm 2160 4 2)

NEWFIELD	arp			ung.	ummary Rig Activity		S
1	1						unc
Well Name:	Ranch 15-1(Ranch 15-10-3-3-2W-UW	>				lry
Job Category					Job Start Date	Job End Date	N N
							umk
Daily Operations							er
in Date /2015	Report End Date 1/9/2015	24hr Activity Summary Install thg head	mary ad				: 6
Start Time	06:00		End Time	16.30	Comment JSA and safety meeting with all vendors. Install FMC TC-1A-ENS Tbg head(13 5/8" – 10K STDD btm x 5 1/8"- 10K STDD top with 2 – 1 13/16"-10K M-130 Pius gate valves on each side outlet). Retrieving too' for TWCV would not go through tbg head. Sent it to be turned down.) with all vendors. Install FMC TC-1A-ENS Tbg head(13 5/8" – 10K STDD btm x 5 1/8"- 1 13/16"-10K M-130 Plus gate valves on each side outlet). Retrieving too' for TWCV g head. Sent it to be turned down.	2478
Start Time	16:30		End Time	21:00	Comment Wait on retrieving tool.		AP
Start Time	21:00		End Time	22:00	Comment Well had 0 Psi on well. MIRU FMC Install FMC TC-1A-ENS Tbg head(13 5/8" – 10K STDD btm x 5 1/8"-10K STDD top with 2 – 1 13/16 10K M-130 Plus gate valves on each side outlet). Retrieving tool for TWCV, Retrieve TWCV. Install night cop and shut down for night. (frac valve hard to close, hard to turn)	STDD btm x 5 1/8"-10K STDD top with 2 – 1 13/16"- tool for TWCV, Retrieve TWCV. Install night cop and	
Start Time	22:00		End Time	00:00	Comment SDFN		N
in Date 72015	Report End Date 1/10/2015	24hr Activity Sumi NU frac stack	24hr Activity Summary NU frac stack & test, Log well				umk
Start Time	00:00		End Time	07:00	Comment Wait on daylight		er
Start Time	07:00		End Time	12:00	Comment JSA and safety meeting with all vendors. Wait while NU and test frac tree on Ute Tribal 14-10-3-3-2 W	test frac tree on Ute Tribal 14-10-3-3-2 W.	: 4
Start Time	12:00		End Time	19:00	Comment When frac stack was delivered noticed that test chart on HCR had 200 psi pressure loss during test in the shop. Sent it back to be repaired. Wait on HCR valve.	R had 200 psi pressure loss during test in the shop.	301
Start Time	19:00		End Time	23:00	Comment New HCR valve on location, Finish NU of frac stack, Test same, unable to get good test on HCR valve, called in for replacement.	ne, unable to get good test on HCR valve, called in	3522
	23:00		End Time	00:00	Comment Wait on new HCR valve.		96
ırt Date 1/2015	Report End Date 1/11/2015	24hr Activity Sumr NU frac stack	24hr Activity Summary NU frac stack & test, Log well				000
Start Time	00:00		End Time	02:50	Comment Wait on new HCR valve.		0
Start Time	05:00		End Time	03:30	Comment Replace HCR valve and finish NU and testing of frac stack.		_
Start Time	03:30		End Time	12:00	Comment Shut in well and wait on wireline to log well		
Start Time	12:00		End Time	18:00	Comment RU jubricator and logging tools. Test lubricator to 5000 psi. RIH with Sector Bond log, GR, and CCL logs. Log from 9372' to surface. TOC at 2250' RD WL trk.	IH with Sector Bond log, GR, and CCL logs. Log	
Start Time	18:00		End Time	18:30	Comment Wait on water truck.		
Start Time	18:30		End Time	00:00	Comment Pump into well and try to open toe. Pressure up on well 13 times at 7 bpm at 9,300 psi, well holding, held pressure for 10 mins at 9,228 psi lost to 9,134 psi. Continue to work well. Tie in B&C and take well to 9,900 psi. repeat step same result. Continue to pressure up on toe and bleed off and pressure to 9,900 psi, with no change in well status,	nes at 7 bpm at 9,300 psi, well holding, held o work well. Tie in B&C and take well to 9,900 psi. bleed off and pressure to 9,900 psi, with no change	
Report Start Date 1/11/2015	Report End Date 1/12/2015	24hr Activity Summary try to open toe	nary				
							_
www.newfield.com	om				Page 1/17	Report Printed: 3/25/2015	

62478 43013522960000 Sundry Number: API Well Number: Report Printed: 3/25/2015 held pressure for 10 mins at 9.228 psi lost to 9,134 psi. Continue to work well. Attempt to open toe, pressure up to 9,900 psi 20 times, hold pressure with no leak off. Bleed off pressure and recover fluid pumped. Trap 9500 psi on well. RDMO HES trucks. RU line to monitor WH pressure. Recieved word from Orson Barney to bleed pressure off well, stop Welltec with their tractor, and to RD WL truck. Decision was made to change out well Comment well head, ND 5 1/8" 10K Frac Stack leaving 5 1/8" 10K Manuel valve on wellhead, N/U 10K Night cap W/ ½" Bleeder valve, Rain for Rent Spot in 16 – 500bbl. Frac tanks Continue Pump into well and try to open toe. Pressure up on well 13 times at 7 bpm at 9.300 psi, well holding. head. Rig down WL. Plan to change out tbg head. Summary Rig Activity Waiting on wellhead Comment Waiting on wellhead Waiting on wellhead Comment Wait on well head Wait on well head wait on well head Wait on wellhead Wait on tbg head Wait on wellhead Wait on wellhead Page 2/17 18:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 End Time Wait on well head Wait on well head 24hr Activity Summary Wait on well head 24hr Activity Summary Wait on well head 24hr Activity Summary Wait on well head Wait on well head 24hr Activity Summary Wait on well head 24hr Activity Summary Wait on well head Wait on well head Wait on well head 24hr Activity Summary Well Name: Ranch 15-10-3-3-2W-UW Report End Date 1/17/2015 Report End Date 1/19/2015 Report End Date 1/22/2015 1/13/2015 1/14/2015 1/15/2015 1/16/2015 1/18/2015 1/20/2015 Report End Date 1/21/2015 Report End Date Report End Date Report End Date Report End Date 00:00 00:00 00:00 14:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00 NEWFIELD www.newfield.com Report Start Date 1/16/2015 Report Start Date 1/21/2015 1/12/2015 1/13/2015 1/15/2015 1/14/2015 1/20/2015 1/17/2015 1/18/2015 1/19/2015 Report Start Date Report Start Date

start Time

NEWFIELD	Well Name: Ranch 15-10-3-3-2W-UW	
NEWF	Well Nam	

1722/2015 Work on well head Total men Total me	Well Name:		Ranch 15-10-3-3-2W-UW	M.		
Figure 1						
Peport End Date Park Activity Summary Peport End Date 1/23/2015 Perof Time 09:30 14:30	Daily Operation	ns su	A STATE OF THE PARTY OF THE PAR			
14:30 End Time 12:30 End Time 12:00 End Time 10:00 Co.00	Report Start Date 1/22/2015	Report End Date 1/23/2015	Wait on well	mmary		
14:30 End Time 12:30 End Time 12:00 End Time 12:00 End Time 12:00 End Time 12:00 End Time 10:00 End	Start Time	00:00		End Time		Comment
14:30	start Time	00:00		End Time	09:30	Wait on wellhead
14:30 End Time 19:30 End Time 19:30 End Time 21:30 End Time 21:30 End Time 1/24/2015 Wait on well head 1/24/2015 SDFN & wait on frac 10:00 End Time 00:00 Volume 10:00 End Time 00:00 Volume 10:00 End Time 00:00 Volume 10:00 End Time 00:00 Colume 10:00 End Time 00:00 Colume 13:00 End Time 00:00 End Time 0	toof Times	06:30			14:30	Hold JSA, R/U & Pressure test FMC Lubricator, Install 5" back pressure valve, N/D 5 1/8" 10K Tubing head, NU 13 5/8" X 11" 10K DSA, 11" X 7 1/16" 10K Tubing head, NU 7 1/16" 10K Manuel Frac valve, R/U Lubricator, Pu 5" back pressure valve, R/D FMC 1 ubricator, Pu
19:30 End Time 21:30 End Time 21:30 End Time 00:00 End Time 00:00 End Time 00:00 End Time 12:00 End Time 00:00 End Time End Time 00:00 End Time End Time 00:00 End Time End Time End Time 00:00 End Time 00:00 End Time End Time 00:00 End Time End Time 00:00 End Time 00:00 End Time End Time End Time 00:00 End Time End Time End Time 00:00 End Time End Time End Time End Time 00:00 End Time End Ti	ian ume an Timo	14:30		End Time	19:30	Comment NU Frac Stack, 7 1/16" 10K "Upper Master" Hydraulic frac valve (HCR), 7 1/16" 10K Flowcross with dual, double 4 1/16" outlets, 7 1/16" 10K "Crown" manual frac valve, 10K "Crown" manual frac valve (10K "Crown"
Report End Date 24thr Activity Summary 12:00 End Time 00:00	art line	19:30		End Time	21:30	Comment Pressure test Frac Stark to Newfields practing testing quidalities and
Report End Date Report End Date 12:00 End Time 12:00 End Time 12:00 End Time 12:00 End Time 10:00 End Time End Time 10:00 End Time End Time 10:00 End Time 10:00 End Time End Time 10:00 End Time End T		21:30		End Time	00:00	Comment Capt tractor factor 4 & D11 into tubuicate Tractor Tractor factor facto
12:00 End Time 12:00 End Time 12:00	1/23/2015	Report End Date 1/24/2015	24hr Activity Sum Wait on well	nmary head		Text waster tested at 10 file lubricator. K/U 5 ½: 10K Lubricator. Test lubricator as per Newfield's procedures.
12:00 End Time 00:00	an Lime	00:00		End Time	12:00	Comment RIH W/ Well Tractor & 3 – 3' Perf Guns. Tagged @ 18,101', Corralate W/Recepticles @ 18,018', 17,808', Perforate Stage 3, Cluster 3 @ 18,063', Stage 4 Clusters 1 & 2 @ 17,976', & 17,911', Log out of hole. R/D Wineling N/D = 4,01,404,41', Log out of hole. R/D
Report End Date 24hr Activity Summary 1/25/2015 SDFN & wait on frac 00:00	ת Time	12:00		End Time	00:00	Comment Wait on Frac, PRO'S Flowback R/U Flowback Equipment, Rain for Rent spot in 3 - 500 bbl Frac fanks for Pump
10:00 End Time 07:00 SDFN & wait on frac SDFN & wait on daylights to start frac. 100:00	oort Start Date 1/24/2015	Report End Date 1/25/2015	SDFN & wait	many on frac		A. D. C.
10.00 End Time 10.00 Sucrement 20.00	t Time	00:00		End Time	00.20	Comment
10:00 End Time 20:00 SDFN & wait on frac. Goff Trucking load mountain movers wiffac sand. SDFN & wait on frac. Goff Trucking load mountain movers wiffac sand. SDFN & wait on frac. Goff Trucking load mountain movers wiffac sand. SDFN & wait on frac. Goff Trucking load mountain movers wiffac sand. SDFN & wait on frac. Goff Trucking load mountain movers wiffac sand. SDFN & wait on frac. Goff Trucking load mountain movers wiffac sand. SDFN & wait on frac. Goff Trucking load mountain movers wiffac sand. SDFN & wait on frac. Goff Trucking load mountain movers wiffac sand. SDFN & wait on frac. Goff Trucking load mountain movers wiffac sand. SDFN & wait on frac. SDFN & wait on daylights to start frac. SDFN & wait on frac. SDFN & wait on daylights to start frac. SDFN & wait on frac. SDFN & wait on frac. SDFN & wait on frac tanks. SDFN & wait on frac. SDFN & wait on frac tanks. SDFN & wait on frac. SDFN & wait on frac tanks. SDFN & wait on frac. SDFN & wait on frac tanks. SDFN & wait on frac. SDFN & wait on frac tanks. SDFN & wait on frac. SDFN & wait on frac tanks. SDFN & wait on frac. SDFN & wait on frac tanks. SDFN & wait on frac. SDFN & wait on frac tanks. SDFN & wait on frac. SDFN & wait on frac tanks. SDFN & wait on frac. SDFN & wait on	t Time	02:00		End Time	10:00	Suring Walt on frac
SDFN & wait on frac. Goff Trucking load mountain movers w/frac sand. SOFN & wait on frac. Goff Trucking load mountain movers w/frac sand. Comment	Time	10.00		End Time	00:00	B&C Quick Test pressure test PRO'S Flowback lines & manifolds to Newfields standards
Report End Date 24th Activity Surmary 1/26/2015 Goff trucking unloading sand. RU & test zipper frac manifold Comment 1/26/2015 Goff trucking unloading sand. RU & test zipper frac manifold Comment Co	Time	00.00		End Time	20:00	SDFN & wait on frac. Goff Trucking load mountain movers w/frac sand.
09:00 End Time 09:00 Comment Comment All frac equipment in place & ready to frac. SDFN & Wait on daylights to start frac. 1/27/2015 MIRU Halliburton frac equipment. Comment Comment Comment All frac equipment in place & ready to frac. SDFN & Wait on daylights to start frac. 00:00 SDFN & Wait on frac. Rockwater is transfering H20 into frac tanks. Comment Comment	ort Start Date 1/25/2015	Report End Date 1/26/2015	24hr Activity Summ Goff trucking	nary	00:00	N/U Zipper Frac Manifold & test as per Newfield's procedures.
13:00 End Time 13:00 Move in Halliburton Frac Equipment, RU SLB Crane & equip. R4R RU spill ponds for testing H2O Lines, Halliburton Moving in pump down equipment frac. SDFN & Wait on daylights to start frac. Comment	Time	00:00		End Time	Oo-oo	Comment
13:00 Move in Halliburton Frac Equipment, RU SLB Crane & equip. R4R RU spill ponds for comment 13:00	Time	00:60		End Time	09:00	SUFN wait on frac.
22:00 Report End Time Comment	Time	13:00		End Time	13:00	Move in Halliburton Frac Equipment, RU SLB Crane & equip. R4R RU spill ponds for Halliburton. Nove in Halliburton Frac Equipment, RU SLB Crane & equip. R4R RU spill ponds for Halliburton Rockwater
Report End Date 24th Activity Summary 1/27/2015 MIRU Halliburton frac equipment. Comment Comment SDFN & Wait on frac. Rockwater is transfering H20 into frac tanks. Comment SDFN & Wait on frac. Rockwater is transfering H20 into frac tanks. Comment SDFN & Wait on frac. Rockwater is transfering H20 into frac tanks. Comment SDFN & Wait on frac. Rockwater is transfering H20 into frac tanks. Comment SDFN & Wait on frac. Rockwater is transfering H20 into frac tanks. Comment SDFN & Wait on frac. Rockwater is transfering H20 into frac tanks. Comment SDFN & Wait on frac. Rockwater is transfering H20 into frac tanks. Comment SDFN & Wait on frac. Rockwater is transfering H20 into frac tanks. Comment SDFN & Wait on frac. Rockwater is transfering H20 into frac tanks. Comment SDFN & Wait on frac. Rockwater is transfering H20 into frac tanks. Comment SDFN & Wait on frac. Rockwater is transfering H20 into frac tanks. Comment SDFN & Wait on frac. Rockwater is transfering H20 into frac tanks. Comment SDFN & Wait on frac. Rockwater is transfering H20 into frac tanks. Comment SDFN & Wait on frac. Rockwater is transfering H20 into frac tanks. Comment SDFN & Wait on frac tanks. Comment SDFN & Wai			a	End Time	li ii	Comment Comment The equipment in place & ready to frac. SDFN & Wait on daylights to start frac. Rockwater is transfering H20 into frac tanks.
00:00 End Time 06:00			24hr Activity Summa MIRU Halliburte	ary on frac equipme	nt.	
	lime		ш	End Time	1 4	Comment SDFN & Wait on frac. Rockwater is transfering H20 into frac touch
Wille Wille Wille William State Control of the Cont	www.newfield.com	E				The motion of th

Report Printed: 3/25/2015

Summary Rig Activity

≥
7
28
ကို
5-3
7
15
Ranch
Name:
lell

NEWFIELD

Start Time 00	06:00	End Time	00:60	Comment Halliburton having computer issues, Rock water filling frac tanks W/H20 @ 20:30 @ 15 BPM H20 coming into tanks is @ 84 deg.
Start Time 0:	00:60	End Time	11:00	Comment The Weatherford zipper manifold had a leak on the barrel of the HCR valve on the 15-10-3-3-2 W-UW side. We relieved all the psi and got about a ¼" of turn on it and it still leaked. Weatherford is bring out a new seal kit to get it fixed.
Start Time	11:00	End Time	14:00	Comment 25bpm @ 7585psi. 14bpm @ 6300psi. 437.8bbls pumped with 10bbls of that being 15% acid. Waited on wireline to get in the 14-10-3-3-2W-MW.
Start Time	14:00	End Time	18:30	Comment While pressure testing Schlumberger Lubricator to 10k we had a leak on one of the connections. So, Schlumberger will have to lay down the lubricator to get it fixed.
Start Time	18:30	End Time	22:00	Comment Prick back up the lubricator and re-pressure test to 10k. Test was good & RIH with guns to KOP. pumped down guns at 15 bpm @ 6500 Psi, @ 255 fpm, 584 LT, pumped guns to 17,861', Pulled up and got line tension. POH and perfed at 17,853-17856'. POOH with tools, max pressure for pump down: 6500 psi. Max rate for pump down - 15 bpm. Total BBIs pumped – 523 +/- bbls. The instrumentation on the frac side was not reading correctly so the total bbls pumped is a calculation not an exact. POOH W/tools. We are working on getting the readings for the pump downs fixed so that we can have correct information.
		End Time	00:00	Comment Start Frac stage #1
Report Start Date Report 1/27/2015 1/	Report End Date 24hr Activity Summary 1/28/2015 Start frac & P&P	many %P		
	00:00	End Time	00:30	Comment Start Frac stage #1. 1. Global Kick Outs set at 9500 psi. Pressure tested to 10500 psi. Job pumped Produced Start Frac stage #1. 1. Global Kick Outs set at 9500 psi. Pressure tested to 10500 psi. Job pumped Produced Water with 0.25% KCI .2. Calculated 12 holes open. 2452 psi perf friction, 768 psi NWB as per FracPro. 3. Stage went well with all proppant placed. WG-36-14.6% (278.2.), BC-200-5.2% (9.9), CL-31-8.7% (2.5) MO-67-8.7% (6.2.), MC S-2010T-17.8% (11.9), Vicon NF-3.3% (6.8), Losurf 300D-6.6% (8.8) Cat 3/4-5.2% (2.5), BE-9-5% (1.8)
Start Time 00	00:30	End Time	11:00	Comment RIH W/stage #2 guns & plug. While RIH @248 fpm & line tension @548 lbs we lost collars on log checked to make sure that guns were still there & everything was communicating. We then started to lose tension so we stopped prover the stopped RIH. Pulled up slowly to get tension & started to pull over. Ran the numbers & found out that we had stopped moving within a few feet of receptacle #9 @16,562'. Started pumps back up @ 3 bpm & worked up & down to try & work free. Could not get free. We continued to pump 3 bpm around plug. Still in the process of working up & down to try & get free. Pulled up to 3500 lbs on line tension & plug came free. Started pumps on got thru a couple of receptacles. Pulled to receptacle #10 & pulled over. Brought pumps on to pump us back down & we got moving down freely 40' & stopped. Came back up to receptacle #10 & pulled over again. Pumped back down in between the 2 receptacles & let plug soak while we P&P on the 14-10.
	11:00	End Time	14:00	Comment We just pumped a 10bbl brine pill to cover up the Schlumberger plug 16,305°. We pump at 3bpm @ 4417psi 6bpm @ 4575psi 9bpm @ 4900psi., 11bpm @ 5100psi. No movement so we went back down to 9bpm @ 5031psi. We will wait another couple of hours and try and pull on the plug again.
	14:00	End Time	18:00	Comment Got unstuck and And are POOH. Inspect plugs.
Start Time 18	18:00	End Time	20:00	Comment Sweep well bore with 10 bbl acid, 51 bbl gel sweep, and 588 bbl recycled water.
www.newfield.com				Page 4/17 Report Printed: 3/25/2015

Sundry Number:	62478	API	Well	Number:	43013522960000
----------------	-------	-----	------	---------	----------------

FIE	la l
EW	
Z	

Summary Rig Activity

>
2W-U
10-3-3
h 15-1
Ranc
Name:
Well

Start lime	20:00	ш	End lime	00:00	Comment. Run 4.32" OD bull nosed gauge ring and sinker bars to 17,810', no obstruction. LTEN 800, 150 fpm, 15 bpm, max press 5880 psi. POH.
Report Start Date 1/28/2015	Report End Date 1/29/2015	24hr Activity Summary Work stuck frac plug	ary c plug		
Start Time	00:00	Ш	End Time	03:00	Continue to POH with gauge ring.
Start Time	03:00	ш	End Time	00:00	Comment Poly Stage #2 Plug and Perf stage #2 RIH with guns and plug to KOP. pumped down guns at 14 bpm, 6043 psi and 150 fpm, 805 LTEN, pumped guns RIH with guns and plug to KOP. pumped down guns at 17,779 while pumping 2 bpm. Increase pump rate to 12 bpm and latched plug into receptacle at 17,808'. Pulled off with 2320 line tension at 04:40 AM. POH and perf at 17,756-759'. Guns #2. 3, and 4 would not fire. POOH with tools. max pressure for pump down: 6043 psi. Max rate for pump down- 14.1 bpm. Pumped 870 bbl total water. POH.
Start Time	00:90	LILL CONTRACTOR OF THE CONTRAC	End Time	10:00	Comment RIH to finish perfs on stg #2. RIH to KOP. pumped down guns at 15 bpm, 5993 psi and 209 fpm, 715 LTEN. pumped guns to 17710'. Perfed at 17,671'-674' and 17,604'-607'. Max pressure for pump down: 6003 psi. Max rate for pump down- 15bpm. Pumped 637 bbl total water. We are POOH. Once OOH will check guns.
Start Time	10:00	ш	End Time	12:00	Comment 1. Global Kick Outs set at 9500 psi. Pressure tested to 10500 psi. Job pumped Produced Water with 0.25% KCI. 2. Calculated 24 holes open, 936 psi perf friction, 944 psi NWB as per FracPro. 3. Saw good ball action at 30bpm. 4. Able to get to designed 60bpm before starting prop. 5. Had Blender tub drop after swapping to fresh water on flush, reduced rate to 50bpm to finish flush. 6. No other issues, good job by crew working with changes in operation. Ball Seat Stage Pressures and Rate: 7015 psi @ 30 bpm, 6360 psi Pressure before Seating, 6815 psi Pressure after Seating. WG-36-3.9% (74.8), FR-76-4.6% (1.3), CLA-Web-4.9% (1), BE-9-9.7% (7.5)
Start Time	12:00	ш	End Time	20:00	Comment Waiting on orders.
Start Time	20:00	ιū .	End Time	23:00	Comment Decision was made to change wire line company. RD EP wireline truck and equipment. Move off location.
Start Time		ū	End Time	00:00	Comment Wait on FTS wireline truck.
Report Start Date 1/29/2015	Report End Date 2 1/30/2015 F	24hr Activity Summary P&P, frac stage 3	iny e 3		
Start Time	00:00	<u> </u>	End Time	12:00	Comment Spot in FTS wireline truck and crane. Put lubricator together. Prepare perf guns to PU and RIH.
Start Time	12:00	ū	End Time	15:00	Comment P&P stg #3 RIH with guns and Plug to KOP. pumped down guns at 15bpm @ 6025Psi, @ 150fpm, 1070LT, pumped guns to 17,527', Pulled up and got line tension and set plug. Line tension prior to setting plug 1700, line tension after plug set 1550, Set plug @ 17,550' plug set time 14:04. POOH and perfed at 17,495-498', 17,442'-445', 17,370'-373'. POOH with tools, max pressure for pump down- 6050psi. Max rate for pump down- 11.1bpm. Total BBls pumped- 578bbls.
Start Time	15:00	Ē.	End Time	17:00	Comment Frac stage 3. 1. Global Kick Outs set at 9500 psi. Pressure tested to 10500 psi. Job pumped Produced Water with 0.25% KCI . 2. Calculated 20 holes open, 716 psi perf friction, 329 psi NWB as per FracPro. 3. Able to get to designed rate of 600pm with no trouble. 4. Lost rate briefly in the 3pgg sand stg, pump came off but were able to get back on. 5. No other issues, able to place job completely. 6. ProTechnics pumped 16cups of CFT-1200. Ball Seat Stage Pressures and Rate: 5795 psi @ 15 bpm . 5650 psi Pressure before Seating , 5795 psi Pressure after Seating . CL-31-5.8% (1.6) MC S-2010T-2.9% (2.2) BE-9-5.7% (2.7)
www.newfield.com	.com				Page 5/17 Report Printed: 3/25/2015

Well Name: Ranch 15-1	Ranch 15-10-3-3-2W-UW		
Start Time 17:00	End Time	21:00	Comment P&P stg #4. RIH with guns and plug to KOP. pumped down guns at 12.5 bpm and 5747 psi, 185 fpm, 1030LT, pumped guns to 17,271. Pulled up and got line tension and set plug. Line tension prior to setting plug 1459. line tension after plug set 1322. Set plug at 17,263. Plug set time 60 seconds. POOH and perfed at 17,273-276, 17,163-166; 17,090-093. POOH with tools, max pressure for pump down-5800 osi. Max rate for rump down-
Start Time 21:00	End Time	00:00	Frac stage #4. 1. Global Kick Outs set at 9500 psi. Pressure tested to 10500 psi. Job pumped Produced Water Frac stage #4. 1. Global Kick Outs set at 9500 psi. Pressure tested to 10500 psi. Job pumped Produced Water with 0.25% KCI. 2. Calculated 18 holes open, 1172 psi perf friction. 0 psi NWB as per FracPro. 3. Held 5 ppg due to pressure rises observed with increases in proppant concentration on formation. 4. Well was successfully and Rate: 5900 psi @ 14.6 bpm , 5658 psi Pressure before Seating , 5900 psi Pressure after Seating WG-36-9% (166.7), Cat 3/4-5.5% (2.6), BE-94% (1.5)
Report Start Date Report End Date 1/30/2015 1/31/2015	24hr Activity Summary P&P, frac		
Start irme 00:00	End Time	03:00	Comment P&P stg #5. RIH with guns and plug to KOP. pumped down guns at 12 bpm and 5660 psi, 193 fpm, 1002 LT, pumped guns to 17,050. Pulled up and got line tension and set plug. Line tension after plug set 1351. Set plug at 17,044. Plug set time 28 seconds. POOH and perfed at 17,019-022. 16,926-929. 16,842-845. POOH with tools, max pressure for pump down-6012 psi. Max rate for pump down-12 bpm. Total bits purmped-513 bits booth.
03:00	End Tme	05:30	Comment Fract Stage #5. 1. Global Kick Outs set at 9500 psi. Pressure tested to 10500 psi. Job pumped Produced Water with 0.25% KCl. 2. Calculated 27 holes open, 532 psi perf friction, 595 psi NWB as per FracPro.3. Stage treated well with all proppant placed. 4. Had to drop rate during flush for the blender tub maintain. 5. Protechnics pumped Ball Seat Stage Pressures and Rate: 5911 psi @ 14.6 bpm , 5704 psi Pressure before Seating , 5911 psi Pressure after Seating. FR-76-9% (1.6), CL-31-7.3% (2) FE-2A-9% (1.6), MO-67-3.6% (2.4), MC S-2010T-2.4% (1.5) Losurf 300D-9.4% (11.9) Cat 3/4-4.4% (2), BE-9-5% (1.9)
Start Time 05:30	End Time	10:00	Comment P&P Stage # 6. P&P stg #6. RIH with guns and plug to KOP. pumped down guns at 12bpm and 5375 psi, 220 fpm, 950LT, pumped guns to 16,770'. Pulled up and got line tension and set plug. Line tension prior to setting plug 1635, line tension after plug set 1402. Set plug at 16,790'. Plug set time 48 seconds. POOH and perfed at 16,747-750'. 16,684-667', 16,613-616'. POOH with tools, max pressure for pump down- 5850 psi. Max rate for pump down- 12,1 bpm. Total hists a pumped-417 biss.
10:00	End Time	12:30	Frac stg. #6. 1. Global Kick Outs set at 9500 psi. Pressure tested to 10500 psi. Job pumped Produced Water with 0.25% KCl. 2. Calculated 19 holes open, 843 psi perf friction, 317 psi NWB as per FracPro. 3. No problems getting to designed rate. 4. Lost MO-67 in 5.0ppg sand stage, lost Xlink, could not get back on. Cut prop and went to flush. 5. Able to flush well completely. Placed approx 136,100lbs or 90.7% of design. No resin coated sand was pumped. Ball Seat Stage Pressures and Rate: 5795 psi @ 14.9 bpm , 5520 psi Pressure before Seating , 5795 psi Pressure after Seating. WG-36-9.9% (171.6.), BC-200-4.4% (7.7.), CL-31-8.1% (2.1.) MO-67-4.2% (2.7.), BE-9-4.4% (1.6.). BE-9-4.4% (1.6.).
www.newfield.com			Page 6/17

NEWFIELD

NEWFIELD			Summer Disa A att. 24
Well Name: Ranch 15-10	Ranch 15-10-3-3-2W-UW		Suffirmary Rig Activity
Start Timo			
12:30	Liu	End Time 16:00	Comment P&P stg #7. RIH with guns and plug to KOP. pumped down guns at 12bpm and 5660 psi, 225 fpm, 950LT, pumped guns to 16,613'. Pulled up and got line tension and set plug. Line tension prior to setting plug 1728, line tension after plug set 1600. Set plug at 16,580'. Plug set time 52 seconds. POOH and perfed at 16,532-535', 16,452'-455', 16,349'-352'. POOH with tools, max pressure for pump down- 5660 psi. Max rate for pump down- 12.1 hpm. Total plug pump down- 5660 psi.
16:00	<u> </u>	18:00	Comment Frac stage #7. 1. Global Kick Outs set at 9500 psi. Pressure tested to 10500 psi. Job pumped Produced Water with 0.25% KCl. 2. Calculated 18 holes open, 964 psi perf friction, 392 psi NWB as per FracPro. 3. Trouble with Blender tub fill valve at the end of Xlink pad, came off line to fix (water in cord connection). Down approx 15min Able to get back into interval and establish rate with no issues and extended Xlink pad before starting sand. 4. No other issues, placed job completely. 5. Protechnics pumped 15,5cups of CTF 1200. Ball Seat Stage Pressures and Rate: 5895 psi @ 14.9 bpm, 5570 psi Pressure before Seating, 5895 psi Pressure after Seating WG-36-7.7% (142.5), BC-200-4.9% (9.1), CL-31-4% (1.1) MO-67-3.3% (2.3). MC S-2510T- 3.6% (2.3) Cat 3/4-5.4% (2.5), BE-9-4.7% (1.8)
18:00	Enc	End Time 21:30	Comment P&P stg #8. RIH with guns and plug to KOP. pumped down guns at 12bpm and 5660 psi, 225 fpm, 950LT, pumped guns to 16,613'. Pulled up and got line tension and set plug. Line tension prior to setting plug 1728, line tension after plug set 1600. Set plug at 16,580'. Plug set time 52 seconds. POOH and perfed at 16,522-535', 16,452'-455', 16,349'-352'. POOH with tools, max pressure for pump down- 5660 psi. Max rate for pump down-
Start lime 21:30	End	End Time 22:30	Comment of the free configuration of the configurat
- 1	End	End Time 00:00	Comment Francisco #0
Report Start Date Report End Date 1/31/2015 2/1/2015	24hr Activity Summary P&P, frac		. ac staga *o.
Start time O0:00	End	End Time 01:00	Frac stage #8. 1. Global Kick Outs set at 9500 psi. Pressure tested to 10500 psi. Job pumped Produced Water with 0.25% KCI. 2. Calculated 20 holes open, 929 psi perf friction, 238 psi NWB as per FracPro. 3. Observed a weak crosslink with a 8.5 pH and cut the screws with 5 ppg on formation and 6 ppg on surface. 4. Dropped rate during flush until pumps kicked out with ~128 bbls left in flush. Well was turned over to flowback 5. Was determined there was an issue with the MO-67 during the stage. Ball Seat Stage Pressures and Rate: 5801 psi @ 15.3 bpm , 5587 psi Pressure before Seating , 5801 psi Pressure after Seating. WG-36-4% (64.9.), MO-67-67.3% (41.2.), BE-9-3.6% (1.2.)
01:00	End	End Time 05:30	Comment SIP 8500 psi. Flowback on 33/64 choke at 8 bpm for 520 bb (wellbore volume 352 bbl). Set choke at 26/64 and flow at 5.5 bpm. When 720 bbl recovered, sample showed medium sand, set choke at 11/64 and flow at 3 bpm.
Start time 05:30	End	End Time 09:00	Comment P&P stage #9. P&P stg #9. RIH with guns and plug to KOP. pumped down guns at 12.1 bpm and 7060 psi, 230 fpm, 900 LTEN, pumped guns to 16,020'. Pulled up and got line tension and set plug. Line tension prior to setting plug 1635, line tension after plug set 1480. Set plug at 16,040'. Plug set time 56 seconds. POOH and perfed at 16,021-024', 15,940'-943', 15,866'-869'. POOH with tools, max pressure for pump down- 7060 psi. Max rate for pump down- 12.1 bpm. Total bbls pumped- 357 bhls.
www.newfield.com			Page 7/17 Report Printed: 3/25/2015
			- 4

NEWEIRIN			
Well Name: Ranch 45,40.3.3.2W IIM		Summary Rig Activity	Sui
			ndry
			z Nu
Start Time	End Time	December	mb
00:60	12:00	Frac Stg. #9. 1. Global Kick Outs set at 9500 psi. Pressure tested to 10500 psi. Job pumped Produced Water with 0.25% KCi. 2. Calculated 20 holes open, 802 psi perf friction, 408 psi NWB as per FracPro. 3. Good job with no issues, placed completely. Ball Seat Stage Pressures and Rate: 5780 psi @ 14.9 bpm , 5690 psi Pressure before Seating , 5780 psi Pressure after Seating. WG-36-3.9% (59.9), BC-200-4.9% (7.6), MO-67-3.6% (2.1), Vicon NF-4.2% (7.3), Losurf 300D-4.3% (5.4) Cat 3/4-6.2% (2.4), BE-9-3.2% (1.2)	
Start Time 12:00	End Time	Comment	
Start Time		LTEN, pumped guns to 15,727. Pulled up and got line tension and set plug. Line tension prior to setting plug 1644, line tension after plug set 1450. Set plug at 15,754. Plug set time 63 seconds. POOH and perfed at 15,725-728, 15,650-653; 15,598-601. POOH with tools, max pressure for pump down- 5980 psi. Max rate for pump down- 12.1 bpm. Total bbls pumped- 330 bbls	API We
15:30	End lime 18:30	Comment Frac strang #10 1 Clara Ziak Cuta 1 Clara 2 Cl	el: T
		with 0.25% KCl. 2. Calculated 20 holes open, 432 psi perf friction, 1833 psi NWB as per FracPro. 3. Could only get to 30bpm @ 8900psi before taking steps for breakdown. 4. Had no water hammer and had high leak off, lost 200psi after 1min in 38sec and had FG of 1.114psi/ft. 5. Sent 1500lbs of 0.25-0.5ppg 100mesh slug to try to clean up. Had slight pressure increase when 100mesh reached bottom. 6. Decision made to clear wellbore and move on to s10. Ball Seat Stage Pressures and Rate: 6695 psi @ 14,7 bpm, 5855 psi Pressure before Seating. WG-36-5% (13.3.), Vicon NF-3.6% (1.9.),	
Start Time 18:30	End Time	Comment	43
Start Time	21:00	: P&P stg #11. RIH with guns and plug to KOP. pumped down guns at 12.1 bpm and 5630 psi, 217 fpm, 941 LTEN, pumped guns to 15,538'. Pulled up and got line tension and set plug. Line tension prior to setting plug 1551, line tension after plug set 1351. Set plug at 15,545'. Plug set time 57 seconds. POOH and perfed at 15517'-520', 15,425'-428', 15,357'-360'. POOH with tools, max pressure for pump down- 5670 psi. Max rate for pump down- 12.1 bpm. Total plus pumped, 382 kelp.	013522
21:00	End Time 21:30	Comment Greate from the company of the comment of t	96
Start Time 21-30	End Time	Comment	00
	00:00	Frac stage #11. 1. Global Kick Outs set at 9500 psi. Pressure tested to 10500 psi. Job pumped Produced Water with 0.25% KCl. 2. Calculated 20 holes open, 969 psi perf friction, 0 psi NWB as per FracPro. 3. Pressure began creeping up with 5 ppg on formation. Dropped 5 bpm and turned down. 4. Well was successfully flushed with all proppant placed. 5. Protechnics pumped 15 cups of CFT 1500. Ball Seat Stage Pressures and Rate: 6147 psi @ 14.6 bpm , 5676 psi Pressure before Seating , 6147 psi Pressure after Seating WG-36-4.9% (74.5). BC-200-3% (4.4). MO-67-2.6% (1.5). Losurf 300D-2.6% (2.9)	
Report Start Date Report End Date 24/1/2015 Report End Date 2/1/2015 P&RP, frac	ummary		
Start Ime 00:00	End Time 02:30	Comment P&P stg #12. RiH with guns and plug to KOP. pumped down guns at 12.1 bpm and 5265 psi, 223 fpm, 950 LTEN, pumped guns to 15,317. Pulled up and got line tension and set plug. Line tension prior to setting plug 1500, line tension after plug set 1375. Set plug at 15,335'. Plug set time 38 seconds. POOH and perfed at 15,282'-285', 15,485'-4188', 15,100'-103'. POOH with tools, max pressure for pump down-5392 psi. Max rate for pump down-12.1 bpm. Total bbls pumped-337 bils. POH AMI Poole and perfect of pump down-12.1 bpm.	
		Tied.	
www.newfield.com		Page 8/17 Report Printed: 3/25/2015	
			_

Summary Rig Activity	Comment Lost fluid end on pump while fracing on 14-10, we don't have enough barsenguage to good and the contractions of the co	from Vernal. Comment Frac stg #12.1. Global Kick Outs set at 9500 psi. Pressure tested to 10500 psi. Job pumped Produced Water with 0.25% KCl 2. Calculated 23 holes open, 724 psi perf friction, 345 psi NWB as per FracPro 3. Cut rate twice with 4 ppg on formation due to a pressure climb 4. Well was successfully flushed. Ball Seat Stage Pressures and Rate: 5945 psi @ 15.2 bpm , 5647 psi Pressure before Seating , 5945 psi Pressure after Seating WG-36-6.1% (90.9), MC S-2510T-3.3% (1.7) Vicon NF-3.4% (6.1),	Comment P&P stg #13. RIH with guns and plug to KOP. pumped down guns at 12.1 bpm and 5454 psi, 230 fpm, 880 LTEN, pumped guns to 15,080'. Pulled up and got line tension and set plug. Line tension prior to setting plug 1739, line tension after plug set 1570. Set plug at 15,048'. Plug set time 67 seconds. POOH and perfed at 15,022'-025', 14,952'-955', 14,859'-862'. POOH with tools, max pressure for pump down- 5454 psi. Max rate for pump down- 12.1 bpm, Total bhis pirmo-et- 354 khis	Comment Western Petroluem put diesel fuel in a hydraulic tank on the CRC Mountain Mover. Right now Halliburton is Comment	Frac sig. #13 1. Global Kick Outs set at 9500 psi. Pressure tested to 10500 psi, Job pumped Produced Water with 0.25% KCl. 2. Calculated 22 holes open, 630 psi perf friction, 460 psi NWB as per FracPro. 3. Good job with no issues, placed completely. Ball Seat Stage Pressures and Rate: 5840 psi @ 14.7 bpm , 5485 psi Pressure before Seating , 5845 psi Pressure after Seating. BC-200-4% (5.9), MO-67-2.1% (1.2),MC S-2510T-3.1% (1.6)	Comment Waiting on the 14-10-3-3-2VV-UVV get wireline done to do the pump down.	P&P stg #14. RIH with guns and plug to KOP. pumped down guns at 12.1 bpm and 5593 psi, 208 fpm, 933 LTEN, pumped guns to 14,784. Pulled up and got line tension and set plug. Line tension prior to setting plug 1487, line tension after plug set 1375. Set plug at 14,790. Plug set time 60 seconds. POOH and perfed at 14,730-733, 14,669-672, 14,577-580. POOH with tools, max pressure for pump down- 5654 psi. Max rate for pump down- 12.1 bpm. Total bbls pumped-331 hits. POH All hour processor.	Comment Wait on 14-10-3-3-2 frac stage #13 to finish.	Comment Wait on 14.10.3.9.9 ##89.4 = 2.5	Comment Frac stage #14. 1. Global Kick Outs set at 9500 psi. Pressure tested to 10500 psi. Job pumped Produced Water with 0.25% KCl. 2. Calculated 27 holes open, 430 psi perf friction, 491 psi NWB as per FracPro. 3. Pressure came up during flush. Had 1 pump kick out as prop concentration fell at the perfs. 4. Protechnics pumped 15 cups of CFT 1900. Ball Seat Stage Pressures and Rate: 5635 psi @ 14.9 bpm, 5501 psi Pressure before Seating, 5635 psi Pressure after Seating WG-36-4% (59.9). (1.8.) Vicon NF-3.8% (7.), Losurf 300D-5.1% (5.5). BE-9-6.1% (1.9.)
	End Time 06:00	End Time 07:30	End Time 10:00	End Time 13:30	17:00	End Time 19:30 End Time	22:00	00:00 ary	End Time 00:30	End Time 02:00
LD Ranch 15-10-3-3-2W-UW	02:30	06:00	07:30		13:30		0.50	Report End Date 24hr Activity Summary	P&P, frac	00:30 En
NEWFIELL Well Name: Ran	Start Time	Start Time	Start Time	Start Time	, 1 1	Start Time	Start Time	rt Date		oran Ime

Well Number:

43013522960000

62478 API

Sundry_Number:

en, 430 psi perf friction, 491 psi NWB as per FracPro. 3. Pressure at as prop concentration fell at the perfs. 4. Protechnics pumped 15 res and Rate: 5635 psi @ 14.9 bpm , 5501 psi Pressure before WG-36-4% (59.9), MO-67-5.8% (3.3), MC S-2510T-3.3% (5.5) BE-9-6.1% (1.9) 500 psi. Pressure tested to 10500 psi. Job pumped Produced Water

Report Printed: 3/25/2015

Page 9/17

www.newfield.com

Start Time		
02:00	02:00	Comment P&P stg #15. RIH with guns and plug to KOP. pumped down guns at 12.3 bpm and 5711 psi, 205 fpm, 933 LTEN. pumped guns to 14,540. Pulled up and got line tension and set plug. Line tension prior to setting plug 1530, line tension after plug set 1353. Set plug at 14,510. Plug set time 52 seconds. POOH and perfed at 14,483°486°, 14,406°409°, 14,325°328'. POOH with tools, max pressure for pump down- 6715 psi. Max rate for pump down- 12,3 hpm. Total blush plugh All tools recovered.
Start Time 05:00 End Time	07:30	Frac stg #15. 1. Global Kick Outs set at 9500 psi. Pressure tested to 10500 psi. Job pumped Produced Water with 0.25% KCI. 2. Calculated 24 holes open, 701 psi perf friction, 376 psi NWB as per FracPro. 3. Had issues with BC-200 during 2 ppg and bucketed it to the blender. Held 2 ppg until issue was resolved. 4. Ran long on 30/50 white. 5. Stage treated well with all proppant placed. Ball Seat Stage Pressures and Rate: 5693 psi @ 14.9 bpm , 5500 psi Pressure before Seating , 5693 psi Pressure after Seating. BC-200-4.7% (7.8), MO-67-4.7% (2.9), Losurf 300D-2.9% (3.3)
Start Time 07:30 End Time	10:00	Comment P&P stg #16. RIH with guns and plug to KOP. pumped down guns at 11.8 bpm and 5275 psi, 240 fpm, 850 LTEN, pumped guns to 14,300'. Pulled up and got line tension and set plug. Line tension prior to setting plug 1700, line tension after plug set 1500. Set plug at 14,300'. Plug set time 45 seconds. POOH and perfed at 14,254'-257', 14,188'-191', 14,116'-119'. POOH with tools, max pressure for pump down- 5610 psi. Max rate for pump down- 70tal bbls pumped- 253 bbls.
10:00	12:30	Comment Frac stg. #16. 1. Global Kick Outs set at 9500 psi. Pressure tested to 10500 psi. Job pumped Produced Water with 0.25% KCl. 2. Calculated 22 holes open, 623 psi perf friction, 511 psi NWB as per FracPro. 3. Trouble lining out Vicon after swapping totes, 4. No other issues, able to place job completely. Ball Seat Stage Pressures and Rate: 5885 psi @ 15.8 bpm , 5505 psi Pressure before Seating , 5885 psi Pressure after Seating
12:30	15:30	Comment P&P stg #17. RIH with guns and plug to KOP. pumped down guns at 11.9 bpm and 5265 psi, 232 fpm, 892 LTEN, pumped guns to 14,100'. Pulled up and got line tension and set plug. Line tension prior to setting plug 1570, line tension after plug set 1385. Set plug at 14,080'. Plug set time 47 seconds. POOH and perfed at 14,028-031', 13,946'-949', 13,837'-840'. POOH with tools, max pressure for pump down- 5475 psi. Max rate for pump down- 12.1bpm. Total bbls pumped- 250 bbls.
15:30	17:30	Comment Frac stage #17. 1. Global Kick Outs set at 9500 psi. Pressure tested to 10500 psi. Job pumped Produced Water with 0.25% KCI. 2. Calculated 22 holes open, 634 psi perf friction, 373 psi NWB as per FracPro. 3. Had pressure turn up when 4.0ppg sand reached bottom. Reduced rate to 53bpm, pressure lined out. 4. No other increases in pressure to end of job, able to place completely. Ball Seat Stage Pressures and Rate: 5670 psi 15.8 bpm, 5440 psi Pressure before Seating , 5690 psi Pressure after Seating WG-36-2.9% (43.6), Cat 34-4.3% (1.6),
Start Time 17:30 End Time	20:30	Comment P&P stg #18. RIH with guns and plug to KOP. pumped down guns at 12.3 bpm and 5367 psi, 230 fpm, 899 LTEN. pumped guns to 13.810'. Pulled up and got line tension and set plug. Line tension prior to setting plug 1658, line tension after plug set 1491. Set plug at 13.785'. Plug set time 52 seconds. POOH and perfed at 13,759'-762', 13,699'-702', 13,608'-611'. POOH with tools. max pressure for pump down- 5450 psi. Max rate for pump down- 12.3 bpm. Total bbls pumped- 250 bbls. POH. All tools recovered. All shots fired.
www.newfield.com		Page 10/17 Report Printed: 3/25/2015

NEWFIELD Summary Righ Activity Summary Right Acti		d Water Stage	essures -10.8%) Cat			99 plug nt ate for	eaking.	/ater own aced.Ball sure NF-	n nlug te for	at 9500 en, d rate ely.		3/25/2045
Sum Sum	ary Rig Activity	nument arc stage #18. 1. Global Kick Outs set at 9500 psi. Pressure tested to 10500 psi. Job pumped Produce ith 0.25% KCl. 2. Calculated 26 holes open, 561 psi perf friction, 458 psi NWB as per FracPro.	nd Rate: 5844 psi @ 14.7 bpm , 5579 psi Pressure before Seating , 5844 psi Pressure after Stage P WG-36-2.5% (38.2), BC-200-3.6% (5.4). MC S-2510T-4.3% (2.2) Vicon NF-4.9% (8.7), Losurf 300D-4.3% (4.5).	mment %P stage #19.		AP stg #19. RIH with guns and plug to KOP. pumped down guns at 12.3 bpm and 5367 psi, 230 fpm, 12.8 bpm st 12.3 bpm and 5367 psi, 230 fpm, 12.8 ine tension after plug set 1491. Set plug at 13.785. Plug set time 52 seconds. POOH and perfed 7.759-762, 13.699-702, 13.609-702, 13.609-700H with tools, max pressure for pump down-5450 psi. Max mp down-12.3 hpm.	ment ille HES was pressure testing to frac stage #19 they found a 7 1/16 10K flange on the zipper manifold issure tested to 9600 ps; held OK	innent c stage #19. Global Kick Outs set at 9500 psi. Pressure tested to 10500 psi. Job pumped Produced V h 0.25% KCl 2. Calculated 24 holes open, 715 psi perf friction, 478 psi NWB as per FracPro 3. Shut of ing pad to repair the mountain movers before going to sand 4. Stage treated well with all proppant p at Stage Pressures and Rate: 5620 psi @ 14.8 bpm , 5398 psi Pressure before Seating , 5620 psi Prestring BC-200-3.9% (6.1), CL-31-4.5% (1) MO-67-3.3% (1.9), MC S-2510T-4.5% (2.4) Vicon % (4.5), Losurf 300D-4.5% (4.7) Cat 3/4-3.3% (1.3), BE-9-4.5% (1.4)	ment 28 #20. RIH with guns and plug to KOP. pumped down guns at 11.8 bpm and 5908 psi, 240 fpm, 71 siN, pumped guns to 13, 285'. Pulled up and got line tension and set plug. Line tension prior to setting 9, line tension after plug set 1250. Set plug at 13,290'. Plug set time 37 seconds. POOH and perfed a 166'-269', 13,169'-172', 13,105'-108'. POOH with tools, max pressure for pump down- 6805 psi. Max raip down- 12bpm. Total bbis pumped- 208 kbls.	The second of the 14-10-3-3-2 trying to get rate to do the pump down. Frac stg #20. 1. Global Kick Outs set Pressure tested to 10500 psi. Job pumped Produced Water with 0.25% KCl. 2. Calculated 23 holes or psi perf friction, 416 psi NWB as per FracPro. 3. Had pressure increase with 4.0ppg on bottom, reduct 50pm to line out. 4. Pressure came up on flush more than expected but were able to place job complet Seat Stage Pressures and Rate: 5800 psi @ 15.8 bpm , 5650 psi Pressure before Seating , 5820 psi sure after Seating. WG-36-5-4% (81.2), BC-200-3.2% (4.8), FR-76-7.2% (1), FE-2A-7.2% (1), MO S-25101-5.7% (3) Vicon NF-4.4% (7.8), Losurf 300D-3.9% (4) Cat 344.4.5.2% (1), MO	(1.0)	Report Printed.
20:30 Report End Date 2/4/2015 Report End Date 2/4/2015 Report End Date 00:00 07:00 6 07:00 End 09:30		22:30		00:00		01:00	04:30	02:00	09:30	15.30		Pagi
		20:30		Report End Date 12/hr Activity Sugges	2/4/2015 P&P, frac	00:00	01:00	04:30	07:00	09:30		www.newfield.com

62478

Sundry Number:

API Well Number:

43013522960000

Report Printed: 3/25/2015

NEWFIELD Well Name: Ran	ELD:: Ranch 15-10-3-3-2W-UW	,	Sumn	Summary Rig Activity
Start Time	15:30	End Time	17:30	Comment P&P stg #21. RIH with guns and plug to KOP. pumped down guns at 11.7 bpm and 5207 psi, 250 fpm, 850 LTEN, pumped guns to 13, 030'. Pulled up and got line tension and set plug. Line tension prior to settling plug 1741, line tension after plug set 1507. Set plug at 13,045'. Plug set time 84 seconds. POOH and perfed at 13,020'-023', 12,951'-954', 12,880'-883'. POOH with tools, max pressure for pump down- 5346 psi. Max rate for pump down- 11.8bpm. Total bbls pumped- 192 bbls.
Start Time	17:30	End Time	20:00	Comment Frac stg. #21. 1. Global Kick Outs set at 9500 psi. Pressure tested to 10500 psi. Job pumped Produced Water Frac stg. #21. 1. Global Kick Outs set at 9500 psi. Pressure tested to 10500 psi. Job pumped Produced Water with 0.25% KCl . 2. Calculated 25 holes open, 610 psi perf friction. 349 psi NWB as per FracPro. 3. Stage treated well with all proppant placed. 4. Protechnics pumped 16 cups of CFT 2500. Ball Seat Stage Pressures and Rate: 5727 psi @ 14.7 bpm , 5451 psi Pressure before Seating , 5727 psi Pressure after Seating WG-36-4.3% (66.7), BC-200-2.2% (3.4), MO-67-3.4% (2), MC S-2510T-3.9% (2.1)
Start Tme	20:00	End Time	23:00	Comment P&P stg #22. RIH with guns and plug to KOP. pumped down guns at 11.7 bpm and 5342 psi, 215 fpm, 204 LTEN, pumped guns to 12,834'. Pulled up and got line tension and set plug. Line tension prior to setting plug 1458, line tension after plug set 1280. Set plug at 12,810'. Plug set time 71 seconds. POOH and perfed at 12,785'-788', 12,690'-693', 12,599'-602'. POOH with tools, max pressure for pump down- 6320 psi. Max rate for pump down- 11.7bpm. Total bbis pumped- 201 bbls. POH. All tools recovered. All shots fired.
Start Time	23:00	End Time	00:00	Comment Grease frac valve.
Report Start Date 2/4/2015	Report End Date 24hr Activity Summary 2/5/2015 P&P, frac			
Start Time		Time	02:00	Comment Wait on 14-10-3-3-2W-MW frac.
Start Time	02:00	End Time (04:00	Comment Frac stage #22. 1. Global Kick Outs set at 9500 psi. Pressure tested to 10500 psi. Job pumped Produced Water with 0.25% KCl. 2. Calculated 27 holes open, 447 psi perf friction, 538 psi NWB as per FracPro. 3. Dropped rate during 6 pg when pressure started turning up. Pressure lined out until CRC hit formation. 4. Dropped rate again with CRC on formation and pressure turned over. 5. Protechnics pumped 15 cups of CFT 2500 MO-67-4.1% (3), Cat 3/4-4% (1.5).
Start Time	04:00		06:00	Comment P&P stg #23. RIH with guns and plug to KOP. pumped down guns at 12.1 bpm and 5844 psi, 219 fpm, 886 LTEN, pumped guns to 12,588'. Pulled up and got line tension and set plug. Line tension prior to setting plug 1375, line tension after plug set 1185. Set plug at 12,570'. Plug set time 20 seconds. POOH and perfed at 12,515'-518', 12,430'-433', 12,345'-348'. POOH with tools, max pressure for pump down- 6726 psi. Max rate for pump down- 12.3bpm. Total bbls pumped- 185 bbls. POH. All tools recovered. all shots fired.
Start Time	06:00	End Time	00:00	Comment 1. Global Kick Outs set at 9500 psi. Pressure tested to 10500 psi. Job pumped Produced Water with 0.25% KCl. 2. Calculated 27 holes open, 385 psi perf friction, 379 psi NWB as per FracPro.3. Had extended FET to work on pressure transducers, short in one causing pumps to kick out 4. Lost MC S-2510 briefly in pad while swapping totes. 5. No other issues, able to place job completely. Ball Seat Stage Pressures and Rate: 6000 psi @ 25.2 bpm , 5890 psi Pressure before Seating , 5995 psi Pressure after Seating. WG-36-3.9% (58.6). BC-200-4% (5.9), MC-67-4% (3.), MC S-2510T-4.6% (2.4) Losurf 300D-3.1% (3.2.) Cat 3/4-4% (1.5.), BE-9-4.6% (1.4.)

Report Printed: 3/25/2015

Page 12/17

www.newfield.com

Sundry Number: 62478 API Well Number: 43013522960000 Report Printed: 3/25/2015 Summary Rig Activity Page 13/17

Well Name: Ranch 15-10-3-3-2W-UW

NEWFIELD

Start Time	00:00	End Time	11:00	P&P stg #24. RIH with guns and plug to KOP. pumped down guns at 11.7 bpm @ 5210 psi, 211 fpm, 946 LTEN, pumped guns to 12,286. Pulled up and got line tension and set plug. Line tension prior to setting plug 1477, line tension after plug set 1284. Set plug at 12,280. Plug set time 49 seconds. POOH and perfed at 12,255-258; 12,184'-187', 12,095'-098'. POOH with tools, max pressure for pump down- 5210 psi. Max rate for pump down-11,9bpm. Total bbls pumped-147 bbls.
Start Time	11:00	End Time	14:00	Frac stg #24 1. Global Kick Outs set at 9500 psi. Pressure tested to 10500 psi. Job pumped Produced Water with Frac stg #24 1. Global Kick Outs set at 9500 psi perf friction, 319 psi NWB as per FracPro. 3. Briefly lost CAT 3/4 in 4.0ppg sand stage, didn't get tote swapped on time. No other issues, able to place job completely. Ball Seat Stage Pressures and Rate: 5600 psi @ 14.7 bpm , 5305 psi Pressure before Seating , 56200 psi Pressure after Seating. WG-36-9.8% (152.1), BC-200-3.5% (5.4), MC S-2510T-4% (2.1) Vicon NF-3.6% (6.5), Cat 3/4-3% (1.2),
Start Time	14:00	End Time	16:00	Comment Wireline shut down due to high winds 35-45 MPH
Start Time	16:00	End Time	19:00	Comment Coperations: P&P stg #25. RIH with guns and plug to KOP. pumped down guns at 11.8 bpm @ 5232 psi. 252 fpm, 864 LTEN, pumped guns to 12,100'. Pulled up and got line tension and set plug. Line tension prior to setting plug 1388, line tension after plug set 1220. Set plug at 12,070'. Plug set time 26 seconds. POOH and perfed at 12,018-021', 11,940'-943', 11,865'-868'. POOH with tools, max pressure for pump down- 5270 psi. Max rate for pump down- 11.8bpm. Total bbls pumped- 139 bbls. POH. All tools recovered. All shots fired.
Start Time	19:00	End Time	20:00	Comment Grease frac valves.
Start Time	20:00	End Time	22:00	Comment Wait on UT14-10-3-3-2W-MW frac.
Start Tme		End Time	00:00	Comment Frac stage #25. 1. Global Kick Outs set at 9500 psi. Pressure tested to 10500 psi. Job pumped Produced Water with 0.25% KCl . 2. Calculated 25 holes open, 628 psi perf friction, 184 psi NWB as per FracPro. 3. Stage with vell with all proppant placed. Ball Seat Stage Pressures and Rate: 5467 psi @ 14.7 bpm , 5327 psi Pressure before Seating , 5467 psi Pressure after Seating WG-36-3% (44.9), Losurf 300D-2.5% (2.6)
Report Start Date 2/5/2015	Report End Date 24hr Activity Summary 2/6/2015 P&P, frac	mmary		
Start Time	00:00	End Time	01:00	Comment Wait on UT 14-10-3-3-2W-MW P&P.
Start Time	01:00	End Time	03:30	Comment P&P stg #26. RIH with guns and plug to KOP. pumped down guns at 12 bpm @ 55378 psi, 230 fpm, 892 LTEN, pumped guns to 11.850. Pulled up and got line tension and set plug. Line tension prior to setting plug 1370, line fension after plug set 1200. Set plug at 11.834. Plug set time 56 seconds. POOH and perfed at 11.785-787., 11,715'-718', 11,619'-621'. POOH with tools, max pressure for pump down- 5494 psi. Max rate for pump down-12.2 bpm. Total bbls pumped-131 bbls. POH. All tools recovered. All shots fired.
Start Time	03:30	End Time	02:00	Comment Wait on UT 14-10-3-3-2VV-MW frac.
Start Time	02:00	End Time	07:00	Comment Frac stg #26. 1. Global Kick Outs set at 9500 psi. Pressure tested to 10500 psi. Job pumped Produced Water with 0.25% KCl. 2. Calculated 26 holes open, 585 psi perf friction, 401 psi NWB as per FracPro. 3. Stage went with all proppant placed. Ball Seat Stage Pressures and Rate: 5421 psi @ 14.7 bpm , 5197 psi Pressure before Seating , 5421 psi Pressure after Seating. BC-200-3.7% (5.7.). MO-67-2.4% (1.8.), MC S-2510T-3.4% (1.7.) Vicon NF-3.6% (6.3.), Losurf 300D-4.6% (4.6.) Cat 3/4-2.9% (1.1.), BE-9-3.9% (1.2.)

www.newfield.com

NEWFIELD	QTE			
			ns	Summary Rig Activity
Well Name:	Ranch 15-10-3-3-2W-UW	ΛΛ		
Start Time		Fnd Time		
	07:00	2	00:60	Comment P&P stg #27. RIH with guns and plug to KOP. Pumped down guns at 11.7 bpm @ 5386 psi, 260 fpm, 835 LTEN. Pumped guns to 11,565. Pulled up and got line tension and set plug. Line tension prior to setting plug 1450, line tension after plug set 1220. Set plug at 11,585. Plug set time 40 seconds. POOH and perfed at 11,531-534. At 14,461-464, 11,375-378. POOH with tools, max pressure for pump down- 5498 psi, Max rate for pump down- 5498 psi, Max rate for pump down- 5498 psi.
Start ime	00:60	End Time	11:30	Frac stg #27 1. Global Kick Outs set at 9500 psi. Pressure tested to 10500 psi. Job pumped Produced Water with 0.25% KCl 2. Calculated 25 holes open. 473 psi perf friction. 273 psi NWB as per FracPro 3. Good job with no issues, placed completely. Ball Seat Stage Pressures and Rate: 5490 psi @ 15.1 bpm , 5345 psi Pressure after Seating. WG-36-5% (75.5). BC-2004.9% (7.4). CL-31-4.8% (1.1) MO-67-4.4% (2.5). MC S-2510T-4.1% (2.1) Losurf 300D-2.8% (2.8). Cat 3/4-3.6% (1.3). BE-9-4.8%
Siart Line	11:30	End Time	14:00	Comment P&P stg #28. RiH with guns and plug to KOP. Pumped down guns at 11.8 bpm @ 5245 psi, 275 fpm. 900 LTEN, Pumped guns to 11,280; Pulled up and got line tension and set plug. Line tension prior to setting plug 1280, line tension after plug set 1130. Set plug at 11,300; Plug set time 86 seconds. POOH and perfed at 11,277-280; 11,187-190; 11,104-107. POOH with tools, max pressure for pump down-5301 psi Max rate for
Start Time	14:00	End Time		Comment
Start Time	14.00	End Time	18:30	Down to repair HES computer.
Start Time	18:30	End Time	22:00	Wait on UT 14-10-3-3-2W-MW stage #24 frac then frac stage #28 on the Ranch
			00:00	Frac stage #28. 1. Global Kick Outs set at 9500 psi. Pressure tested to 10500 psi. Job pumped Produced Water with 0.25% KCl. 2. Calculated 22 holes open, 795 psi perf friction, 494 psi NWB as per FracPro. 3. Stage treated well with all proppant placed. 4. Protechnics pumped 14 cups of CFT 4000. Ball Seat Stage Pressures and Rate: 5544 psi @ 14.7 bpm . 5329 psi Pressure before Seating . 5544 psi Pressure after Seating 3.44.3 ov. (1.5.) pc. 0.7 cv. (29). MC S-2510T-4.8% (2.4.) Vicon NF-4.3% (7.6.). Cat
2/6/2015	Report End Date 24hr Activity Summary 2/7/2015 P&P, frac	птагу		(5.5) (5.7) (5.7)
Cont. Time	00:00	End Tme	05:00	Current Operations: P&P stg #29. RIH with guns and plug to KOP. Pumped down guns at 12.2 bpm @ 5280 psi, 241 fpm, 940 LTEN, Pumped guns to 11,082. Pulled up and got line tension and set plug. Line tension aprior to setting plug 1252, line tension after plug set 1096. Set plug at 11,070. Plug set time 18 seconds. POOH and perfed at 11,024-027, 10,950-953, 10,868-871. POOH with tools, max pressure for pump down-5388 psi. Max rate for pump down-12.4 how Total but and perfed at 12,024-027.
	02:00	End Time	04:00	Commercial of the Control of the Con
Start Time	04:00	End Time	04:30	Walt While Trac stage #25 on UT 14-10-3-3-2W-MW. Comment Grease frac tree.
	04:30	End Time	00:00	Frac stage #29.1. Global Kick Outs set at 9500 psi. Pressure tested to 10500 psi. Job pumped Produced Water with 0.25% KCI. 2. Calculated 25 holes open, 625 psi perf friction, 183 psi NWB as per FracPro. 3. Stage went well with all proppant placed. Ball Seat Stage Pressures and Rate: 5437 psi @ 14.7 bpm, 5282 psi Pressure after Seating. W6.36-2.9% (43.9), BC-200-2.1% (3.1), CL-31-6.6% (1.5) FE-2A-9.3% (1.1) Vicon NF-2 5% (4.4) Calculated
www.newfield.com				Page 14/17
				veport Fillied: 3/25/2015

43013522960000 62478 Sundry Number: API Well Number: with 0.25% KCI. 2. Calculated 25 holes open, 473 psi perf friction, 314 psi NWB as per FracPro. WG-36-3.5% (58.4), FR-76-17.5% (2.1), CL-31-6.7% (1.5) Vicon NF-3.2% (6.5), Losurf 300D-2.2% (2.2) Cat 3/4-4% (1.5), well before pumping guns down. 4. Stage went well with all proppant placed. 5. Protechnics pumped 15 cups of CFT 4000. Ball Seat Stage Pressures and Rate: 5123 psi @ 13.7 bpm , 5005 psi Pressure before Seating , 5123 psi Pressure after Seating WG-36-10.9% (165), BC-200-4.2% (6.3), MO-67-2.7% (1.5) Losurf 300D-3.6% (4) Cat 3/4-2.7% (1.5), 1240, line tension after plug set 1095. Set plug at 11,790'. Plug set time 45 seconds. POOH and perfed at 10,775'-778', 10,704'-707', 10,635'-638'. POOH with tools, max pressure for pump down- 5408 psi. Max rate for the plug and tool string. We POOH and the plug and tool string looked good. We are going to pump a sweep on the well and RiH to P&P stg. #31. P&P stg #31. RiH with guns and plug to KOP. Pumped down guns at 11.8 bpm @ 4860 psi, 270 fpm, 939 LTEN. Pumped guns to 10.540'. Pulled up and got line tension and set plug. Frac stage #31. 1. Global Kick Outs set at 9500 psi. Pressure tested to 10500 psi. Job pumped Produced Water 10,289'-292', 10,220'-223', 10,122'-125'. POOH with tools, max pressure for pump down- 4968 psi. Max rate for Swept We R!H on stg #31 P&P. We lost weight at 7650' in the hole. Started losing weight again at 7812' slowed down and lost weight at 7850'. We made the decision to pull up and see what are weight would be like pulling up the Pumped guns to 11,785'. Pulled up and got line tension and set plug. Line tension prior to setting plug Frac stg. #30. 1. Global Kick Outs set at 9500 psi. Pressure tested to 10500 psi. Job pumped Produced Water hole. It locked like we were dragging something up the hole. So, we decided at that point to POOH and lock at LTEN, Pumped guns to 10,356'. Pulled up and got line tension and set plug. Line tension prior to setting plug 1228, line tension after plug set 1090. Set plug at 10,330'. Plug set time 24 seconds. POOH and perfed at P&P stg #32. RIH with guns and plug to KOP. Pumped down guns at 12.1 bpm @ 4646 psi, 254 fpm, 987 Line tension prior to setting plug 1318, line tension after plug set 1146. Set plug at 10,545'. Plug set time 23 seconds. POOH and perfed at 10,520'-523', 10,427'-430', 10,348'-351'. POOH with tools, max pressure for Weatherford's HCR valve leaking. Repair valve. Test valve to Newfield's standards, 200 low. 10K high with 0.25% KCI .2. Calculated 24 holes open, 680 psi perf friction, 13 psi NWB as per FracPro. P&P stg #30. RIH with guns and plug to KOP. Pumped down guns at 11.8 bpm @ 5398 psi, pump down- 12.2 bpm. Total bbls pumped- 54 bbls. POH. All tools recovered. All shots fired pump down- 4860 psi. Max rate for pump down- 11.8 bpm. Total bbls pumped- 66 bbls.

Frac UT 14-10-3-3-2W-MW

20:00 23:00 00:00

End Time End Time End Time

Frac srage #31

02:30

24hr Activity Summary P&P, frac

2/8/2015

2/7/2015 Report Start Date

00:00

20:00 23:00

15:30

Start Time Start Time tart Time

pump down- 11.8 bpm. Total bbls pumped- 74 bbls.

08:00

06:00

Start Time

11:30

08:00

Start Time

11:30

15:30

Summary Rig Activity

Ranch 15-10-3-3-2W-UW

Weil Name:

NEWFIELD

Report Printed: 3/25/2015 placed. Ball Seat Stage Pressures and Rate: 5209 psi @ 14.8 bpm , 5069 psi Pressure before Seating , 5209 psi Pressure after Seating. WG-36-3% (45.1), MO-67-2.9% (1.6), Vicon NF-2.1% (3.6), Cat 3/4-4.2% (2.4), Page 15/17 www.newfield.com

Frac stage #32. 1. Global Kick Outs set at 9500 psi. Pressure tested to 10500 psi. Job pumped Produced Water with 0.25% KCl. 2. Calculated 23 holes open, 708 psi perf friction, 56 psi NWB as per FracPro.3. Lost a pump

Wait on UT 14-10-3-3-2W-MW frac.

05:30

End Time End Time

> 04:30 05:30

Start Time

04:30

02:30

during the 1 ppg stage. Got back up to rate at the end of the 2 ppg stage.4. Stage treated well with all proppant

M	
7	

Summary Rig Activity

		MO-MZ-C-C-01-01			
Start Time	07:00		End Time 09:00	0	Comment P&P stg #33. RIH with guns and plug to KOP. Pumped down guns at 11.6 bpm @ 4930 psi, 260 fpm. 900 LTEN, Pumped guns to 10,089; Pulled up and got line tension and set plug. Line tension prior to settling plug 1140, line tension after plug set 1020. Set plug at 10,085'. Plug set time 22 seconds. POOH and perfed at 10,040-043', 9,925-928', 9,840'-843'. POOH with tools, max pressure for pump down- 4933 psi. Max rate for pump down- 17 phym. Total but a price of the pump down- 17 phym.
Start Time	00:60		End Tme 10:30	0	Comment 1. Global Kick Outs set at 9500 psi. Pressure tested to 10500 psi. Job pumped Produced Water with 0.25% KCI. 2. Calculated 22 holes open. 633 psi perf friction, 314 psi NWB as per FracPro. 3. Stage went well. WG-36-16.7% (249.9), FR-76-10.1% (1.1), CL-31-6.7% (1.5) MO-67-3.2% (1.8), MC S-2510T-4.2% (2) Vicon NF-4.3% (7.4).
Charlet Time	10:30		End Time 12:30		Comment P&P stg #34. RIH with guns and plug to KOP. Pumped down guns at 11.7 bpm @ 4758 psi, 250 fpm, 950 LTEN, Pumped guns to 9,830'. Pulled up and got line tension and set plug. Line tension prior to setting plug 1225, line tension after plug set 1075. Set plug at 9826'. Plug set time 57 seconds. POOH and perfed at 9,791'. 794', 9,3737'-740', 9,680'-683'. POOH with tools, max pressure for pump down- 4758 psi. Max rate for pump
Start Time	12:30		End Time 15:30		Comment Frac stg #34. 1. Global Kick Outs set at 9500 psi. Pressure tested to 10500 psi. Job pumped Produced Water with 0.25% KCl. 2. Calculated 22 holes open, 631 psi perf friction, 398 psi NWB as per FracPro. 3. Last stage on well. Did no pump any chemicals through flush. 4. 15.5 cups CFT 4000. WG-36-16.7% (24.1.1), BC-200-2.6% (3.8.), CL-31-5.9% (1.3.) MO-67-6.8% (3.7.), MC S-2510T-6.7% (2.8.) Vicon NF-4.2% (6.6.), Losurf 300D-2.8% (2.4.) Cat 3/4-7.7% (2.8.) BE-0.4.7% (1.7.)
ort Start Date	15:30		End Time 00:00		Comment Well SI. Wait on UT 14-10-3-3-2\text{VV-MN/ frac}
2/8/2015 Start Time	2/9/2015	Wait on UT	Wait on UT 14-10-3-3-2W-MW frac		
ort Start Date	00:00	194br A children	End lime 00:00		Comment Well SI. Wait on UT 14-10-3-3-2W-MW frac.
2/9/2015 Start Time	2/10/2015	Wait on UT	Wait on UT 14-10-3-3-2W-MW frac		ODEL ALLEGATION
- t-t-0	00:00		12:00		Comment Shut well in wating on fracto complete and its as a comment
e to C	12:00		End Time 00:00		Comment RD frac crew and release equivment
2/10/2015 Start Time	2/11/2015	24hr Activity Sum ND frac stack	24hr Activity Summary ND frac stack, install night cap		The second of th
	00:00		End Time 00:00		Comment ND frac stack install night can continue to account
2/11/2015 Start Time	2/12/2015	24hr Activity Summary Well shut in	mary		and release equipment. Well shut in
t Start Date	00:00	2445	End Time 00:00		Comment Well shut in
2/12/2015 Start Time	2/13/2015	Well shut in	mary		
totol totol	00:00		End lime 00:00		Comment Well shift in
2/13/2015	2/14/2015	24hr Activity Summary Well shut in	nary		
www.newfield.com	mo				

Will Market			Summary Rig Activity
- 1	MO-MZ-5-9-01-01 13:18:1		
Start Time			
		End Time 00:00	Comment Well shut in, Monitor pressure during UT 13-10-3-3-2 frac.
Report Start Date Report End Date 2/14/2015 2/15/2015 Start Time	24hr Activity Sumn Well shut in	۲۸	
- 1		End Time 00:00	Comment Well shut in, Monitor pressure during UT 13-10-3-3-2 frac.
2/15/2015 Report End Date 2/15/2015 Start Time	24hr Activity Sumn Well shut in	٨	
- 1		End Time 00:00	Comment Well shut in Monitor presente during LIT 42 40 2 2 2 6 5 5 5
2/16/2015 Report End Date 2/17/2015	24hr Activity Sumr Well shut in		Francisco prosoure dumig OT 10-10-5-5-2 ITAC.
00:00	En	End Time 00:00	Comment Well shut in, Monitor pressure during UT 13-10-3-3-2 frac.
Report Start Date Report End Date 2/17/2015 2/18/2015	24hr Activity Sumi Well shut in		0.00 AM - 3934.53 PS
Start lime 00:00	Enc	End Time 00:00	Comment Well shut in, Monitor pressure during UT 13-10-3-3-2 frac
Report Start Date Report End Date	24hr Activity Summary		8:00 AM - 3959.51 PSI
T	Well shut in	Time	Comment
- 0	- [00:00	Well shut in, Monitor pressure during UT 13-10-3-3-2 frac. 8:00 AM - 3946,68PSI
2/19/2015 Report End Date 2/20/2015	Well shut in		
		End Time 00:00	Comment Well shut in, Monitor pressure during UT 13-10-3-3-2 frac.
Report Start Date Report End Date 2/20/2015 2/21/2015	24hr Activity Sumr Well shut in		
- 1		End Time 00:00	Comment Well shut in, Monitor pressure during UT 13-10-3-3-2 frac.
Report Start Date Report End Date 2/21/2015 2/22/2015 2/22/2015	24hr Activity Summ Well shut in		
		Time 00:00	Comment Well shut in, Monitor pressure during UT 13-10-3-3-2 frac.
2/22/2015 Report End Date 2/22/2015	24hr Activity Sumn POP Well		of control of the ballety
Start Time 00:00	End Time	Гіте 12:00	Comment Well shirt in Monitor presente during 117 49 40 9 9 6 6 6
12:00	End Time	Time 18:00	Comment Comment Process Control of 15-10-3-3-2 liac. POP well on 2/22/2015 at 6:00 pm with 3884 psi on 6/64. Turn well over to production
www.newfield.com			

NEWF	IELD					Direct	ional S	urvey					
Legal Well Name Ranch 15-10		١٨/					Wellbore						
API/UWI		Surface Le	gal Location				Field Name	al Hole		Well Type		Well	Configuration Type
4301352296 Well RC	0000		368FSL 23	11FEL SEC		2W MERU	UINTA CE	B-WASAT	CH HORZ Spud Date	Develop		Hor	izontal
500378194			uchesne			Jtah			,	/2014 06:0		Final Rig Relea	22/2014 16:00
Actual Deviation Actual, Prop			bore Name ginal Hole	Parent Wel			jinal, 8/27/2	2014 00:00	VS Dir (°)	Profile Type Directiona	1	Kick Off Depth (ftKB)
Date	9/10/201		Defin	tive?			Description				Proposed?		8,570
MD Tie In (ftKB)	9/10/201	TVDTie Ir	ı (ftKB)	În	No clination Tie In	(°)	Actual Azimuth	Tie In (°)	11	ISTie In (ft)		EWTie	No In (ft)
Survey Data	ar and the								1				
							F		Build	Tum	Unwrap		
Date 10/11/2014	MD (ftKB)	Incl (°)	Azm (°)	TVO (#KB)	VS (ft)	NS (ft)	EW (ft)	DLS (°/100ft 0.00		(°/100ft) 0,00	Displace (ft)	Method MWD	Survey Company Weatherford
						ľ	ľ	0.00	0.00	0.00	0.00	10100	VVeatheriold
9/11/2014	0	0.00	0.00	0	0	0	0	0.00		0.00	0.00	MWD	Payzone
9/10/2014	176	0.00	102.05	176	0	0	0	0.00		57.98		MWD	Payzone
9/10/2014	207 236	0.31	66.32 93.26	207 236	0	0	0	1.00		-115.26		MWD	Payzone
9/10/2014	263	0.16	66.89	263	0	0	0	0.70 0.27	-0.62 0.11	92.90		MWD	Payzone Payzone
9/10/2014	291	0.40	31.73	291	0	0	0	1.02		-125.57		MWD	Payzone
9/10/2014	319	0.62	48.30	319	0	0	0	0.94	0.79	59.18		MWD	Payzone
9/10/2014	348	0.31	64.47	348	1	0	1	1.15	-1.07	55.76		MWD	Payzone
9/10/2014	376	0.62	47.29	376	1	1	1	1.20	1.11	-61.36	1.10	MWD	Payzone
9/10/2014	403	0.48	57.53	403	1	1	1	0.63		37.93		MWD	Payzone
9/10/2014	431 463	0.81	69.09 82.40	431 463	1	1	1	1.26		41.29	1.67	MWD	Payzone
9/10/2014	493	0.88	67.33	493	1	1	2	0.90	-0.75 1.03	41.59 -50.23		MWD	Payzone
9/10/2014	523	0.57	94.93	523	1	1	2	1.53		92.00		MWD	Payzone Payzone
9/10/2014	553	1.01	97.08	553	1	1	3	1.47	1.47	7.17		MWD	Payzone
9/10/2014	583	1.38	117.27	583	1	1	3	1.85	1.23	67.30		MWD	Payzone
9/10/2014	613	1.41	125.91	613	1	1	4	0.71	0.10	28.80	4.55	MWD	Payzone
9/10/2014	643	1.36	124.59	643	0	0	5	0.20		-4.40	5.28	MWD	Payzone
9/10/2014	673 703	1.19	115.71 126.17	673 703	0	0	5	0.87	-0.57	-29.60	5.94	MWD	Payzone
9/10/2014	733	1.10	106.44	733	-1	-1	6	0.76 1.24	-0.30 -0.30	34.87 -65.77		MWD	Payzone
9/10/2014	763	0.53	122.57	763	-1	-1	7	1.74		53.77		MWD	Payzone Payzone
9/10/2014	793	0.57	100.68	793	-1	-1	7	0.71	0.13	-72.97		MWD	Payzone
9/10/2014	823	0.40	114.35	823	-1	-1	7	0.68	-0.57	45.57		MWD	Payzone
9/10/2014	853	0.44	127.05	853	-1	-1	7	0.34	0.13	42.33	8.24	MWD	Payzone
9/10/2014	883	0.76	130.72	883	-1	-1	8	1.07	1.07	12.23		MWD	Payzone
9/11/2014	913 943	0.62	127.49 120.90	913	-1	-2	8	0.48	-0.47	-10.77		MWD	Payzone
9/11/2014	973	0.79	93.04	943 973	-2 -2	-2 -2	8	0.63 1.27	0.57	-21.97		MWD	Payzone
9/11/2014	1,003	0.75	79.46	1,003	-2	-2	9	0.62	-0.13	-92.87 -45.27		MWD	Payzone Payzone
9/11/2014	1,033	0.92	85.79	1,033	-2	-2	9	0.64	0.10	21.10		MWD	Payzone
9/11/2014	1,063	0.75	67.77	1,063	-1	-2	10	1.04	-0.57	-60.07		MWD	Payzone
9/11/2014	1,093	0.93	74.37	1,093	-1	-2	10	0.68	0.60	22.00	11.39	MWD	Payzone
9/11/2014	1,123	0.62	85.57	1,123	-1	-2	11	1.15		37.33	11.80	1	Payzone
9/11/2014	1,153	0.38	54.14	1,153	-1	-1	11	1.19	-0.80	-104.77		MWD	Payzone
9/11/2014	1,183 1,213	0.66	12.93 7.70	1,183 1,213	-1 -1	-1 -1	11	1.26	0.63	-137.37		MWD	Payzone
9/11/2014	1,243	0.79	349.46	1,243	0	-1	11	0.35	0.30	-17.43 1139.20		MWD	Payzone
9/11/2014	1,273	0.65	336.65	1,273	0	0	11	0.71	-0.47	-42.70	13.35		Payzone Payzone
9/11/2014	1,303	0.79	338.30	1,303	1	0	11	0.47	0.47	5.50	13.73		Payzone
9/11/2014	1,333	1.14	327.09	1,333	1	1	10	1.32	1.17	-37.37		MWD	Payzone
9/11/2014	1,363	1.32	338.34	1,363	2	1	10	1.00	0.60	37.50	14.87	MWD	Payzone
9/11/2014	1,393	1.45	329.07	1,393	2	2	10	0.86	0.43	-30.90	15.60		Payzone
9/11/2014	1,423 1,453	1.05	325.46 323.22	1,423	3	2	10	1.36	-1.33	-12.03		MWD	Payzone
9/11/2014	1,483	0.92	325.16	1,453	4	3	9	0.62 1.04	0.60 -1.03	-7.47 6.47	16.85	MWD	Payzone
9/11/2014	1,513	0.62	319.27	1,513	4	4	9	1.04	-1.03	-19.63	17.41		Payzone Payzone
													I. dyaorio

Sundry Number: 62478 API Well Number: 43013522960000 NEWFIELD

Directional Survey

Legal Well Name						
Ranch 15-10-3-3-2W-	.U.V.		Weilbore Name			
API/UWI			Original Hole			
43013522960000	Surface Legal Location SWSE 368FSL 2311FEL SE	C10 T2C D2W MEDI	Field Name		Well Type	Well Configuration Type
Well RC	County	State/Province			Development	Horizontal
500378194	Duchesne	Utah		Spud Date	10044.00	Final Rig Release Date
		- 10		9/24	/2014 06:00	12/22/2014 16:00

50037619			Duchesne		Į	Jtah			0/2	4/2014 06:	00	Final Rig Re	
Survey Da	ıta	200							512	4/2014 06:	00	1:	2/22/2014 16:00
Date	MD (ftKB)	loal (9)		100			1		Build				
9/11/2014	1,543	Incl (°) 3 0.35	Azm (°) 353.41	TVD (ftKB)	VS (ft)	NS (ft)	EW (ft)	DLS (°/100f	ft) (°/100ft)	Turn (°/100ft)	Unwrap Displace (1	t) Method	Survey Company
10/5/2014	1,573	1		1,543						113.80		6 MWD	Payzone
10/5/2014	1,757			1,573				1.25	-1.03	-421.87		4 MWD	Weatherford
10/5/2014	1,851			1,757	3			0.54	0.52	-54.48			Weatherford
10/5/2014	1,945			1,851	2		11	0.05	-0.05	-0.22	21.3	0 MWD	Weatherford
10/5/2014				1,945	1		12	0.05	0.01	3.26		5 MWD	Weatherford
10/5/2014	2,038			2,038	0	0	13	0.05	0.04	1.26		3 MWD	Weatherford
	2,132			2,132	-1	-1	15	0.08	0.02	4.68		7 MWD	
10/5/2014	2,226			2,226	-2	-2	16	0.29		11.54		MWD	Weatherford
10/5/2014	2,319			2,319	-3	-3	16	0.27	1	-4.04		MWD	Weatherford
10/5/2014	2,413			2,413	-4	-5	17	0.04		0.63			Weatherford
10/5/2014	2,506		141.84	2,506	-6	-6	19	0.14			30.71		Weatherford
10/5/2014	2,600	1.19	146.05	2,600	-7	-8	20	0.14		-0.92		MWD	Weatherford
10/5/2014	2,694	1.14	146.40	2,694	-9	-9	21	0.05		4.48	34.34		Weatherford
10/5/2014	2,787	1.24	141.52	2,787	-10	-11	22			0.37	36.25		Weatherford
10/5/2014	2,881	1.19	142.98	2,881	-12	-12	23	0.15		-5.25		MWD	Weatherford
10/5/2014	2,975	1.17	143.03	2,975	-13	-14		0.06		1.55		MWD	Weatherford
10/5/2014	3,068	1.17	144.06	3,068	-15		24	0.02		0.05	42.11	MWD	Weatherford
10/5/2014	3,162	1.17	138.80	3,162	-16	-15	25	0.02	0.00	1.11	44.01	MWD	Weatherford
10/5/2014	3,255	1.30	141.05	3,255		-17	27	0.11	0.00	-5.60	45.93	MWD	Weatherford
10/5/2014	3,349	1.19	146.12	3,349	-18	-18	28	0.15	0.14	2.42	47.93	MWD	Weatherford
10/6/2014	3,443	1.30	151.33		-19	-20	29	0.17	-0.12	5.39	49.97	MWD	Weatherford
10/6/2014	3,536	1.29	152.15	3,443	-21	-22	30	0.17	0.12	5.54	52.01	MWD	Weatherford
10/6/2014	3,630	1.26	152.15	3,536	-23	-24	31	0.02	-0.01	0.88		MWD	Weatherford
10/6/2014	3,724	1.33		3,629	-25	-26	32	0.04	-0.03	0.73		MWD	Weatherford
10/6/2014	3,817		157.32	3,723	-26	-27	33	0.13	0.07	4.77		MWD	Weatherford
10/6/2014	3,911	1.31	155.35	3,816	-28	-29	34	0.05	-0.02	-2.12		MWD	Weatherford
10/6/2014	4,004	1.26	157.78	3,910	-30	-31	35	0.08	-0.05	2.59		MWD	Weatherford
10/6/2014		1.36	163.38	4,003	-32	-33	35	0.17	0.11	6.02	64.70		Weatherford
10/6/2014	4,098	1.26	165.45	4,097	-34	-35	36	0.12	-0.11	2.20	66.85		
	4,192	1.25	168.30	4,191	-36	-37	36	0.07	-0.01	3.03		MWD	Weatherford
10/6/2014	4,285	1.29	167.54	4,284	-38	-39	37	0.05	0.04	-0.82		MWD	Weatherford
10/6/2014	4,379	1.20	171.88	4,378	-40	-41	37	0.14	-0.10	4.62			Weatherford
10/6/2014	4,473	1.25	167.88	4,472	-42	-43	38	0.11	0.05	-4.26		MWD	Weatherford
0/6/2014	4,566	1.22	173.48	4,565	-44	-45	38	0.13	-0.03			MWD	Weatherford
0/6/2014	4,660	1.25	171.03	4,659	-46	-47	38	0.06	0.03	6.02	77.02		Weatherford
0/6/2014	4,754	1.28	174.77	4,753	-48	-50	38	0.09		-2.61	79.05		Weatherford
0/6/2014	4,847	1.34	182.58	4,846	-50	-52	38		0.03	3.98	81.12		Weatherford
0/6/2014	4,941	1.36	179.18	4,940	-53	-54	38	0.20	0.06	8.40	83.24		Weatherford
0/6/2014	5,035	1.34	183.26	5,034	-55	-56		0.09	0.02	-3.62	85.46		Weatherford
0/6/2014	5,128	1.48	178.71	5,127	-57	-58	38	0.10	-0.02	4.34	87.67		Weatherford
0/6/2014	5,222	1.47	177.36	5,221	-59		38	0.19	0.15	-4.89	89.96		Weatherford
0/6/2014	5,316	2.06	162.56	5,315	-62	-61	38	0.04	-0.01	-1.44	92.38		Weatherford
0/6/2014	5,409	4.04	161.38	5,408	-62	-64	39	0.79	0.63	-15.74	95.25		Weatherford
0/7/2014	5,503	5.03	154.57			-68	41	2.13	2.13	-1.27	100.20		Weatherford
0/7/2014	5,597	5.96	149.11	5,502	-74	-75	43	1.20	1.05	-7.24	107.61		Weatherford
0/7/2014	5,690	6.01	146.29	5,595	-81	-83	48	1.13	0.99	-5.81	116.61		Weatherford
0/7/2014	5,784			5,688	-89	-91	53	0.32	0.05	-3.03	126.30		Weatherford
0/7/2014	5,784	7.00	148.14	5,781	-98	-100	59	1.08	1.05	1.97	136.95		Weatherford
0/7/2014	6,065	6.67	149.25	5,967	-117	-119	70	0.19	-0.18	0.59	159.20		Weatherford
0/7/2014		7.45	151.67	6,060	-127	-129	76	0.89	0.83	2.57	170.75		Weatherford
	6,159	7.08	152.88	6,153	-137	-140	81	0.43	-0.39	1.29	182.64		
0/7/2014	6,252	6.73	153.99	6,246	-147	-150	86	0.40	-0.38	1.19	193.82 M		Weatherford
0/8/2014	6,346	7.00	151.60	6,339	-157	-160	91	0.42	0.29	-2.54			Weatherford
0/8/2014	6,439	6.95	151.84	6,431	-166	-170	97	0.06	-0.05	0.26	205.05 N		Weatherford
)/8/2014	6,533	6.34	153.02	6,525	-176	-179	102	0.66	-0.65		216.35 N		Weatherford
							.02	0.00	-0.05	1.26	227.22 N	/IWD	Weatherford
/ww.newfie	Id com												

NEV	VFI	ELD
W	4	

Directional Survey

Legal Well Name			Wellbore Name					
Ranch 15-10-3-3-2W-UW			Original Hole					
	Surface Legal Location		Field Name		Well Type		Weil Configuration Type	\neg
	SWSE 368FSL 2311FEL SE	EC10 T3S R2W MERU	UINTA CB-WASAT	TCH HORZ	Development		Horizontal	
Weil RC	County	State/Province		Spud Date		Final Rig	Release Date	\neg
500378194	Duchesne	liltah		0/2/	/2014 06:00		12/22/2014 16:00	_

500378194		Di	uchesne		U	ltah			9/24	/2014 06:0	0	12/2	22/2014 16:00
Survey Data	9					1,-615%		90000	2010				
Date	MD (ftKB)	Incl (°)	Azm (°)	TVD (ftKB)	VS (ft)	NS (ft)	EW (ft)	DLS (°/100ft)	Build (°/100ft)	Turn (°/100ft)	Unwrap	Mathad	
10/8/2014	6,626	6.87	149.66	6,617	-185	-189	107	0.71	0.57	-3.61	Displace (ft) 237.92	Method MWD	Survey Company Weatherford
0/8/2014	6,720	6.83	147.46	6,710	-195	-198	113	0.28	-0.04	-2.34	249.12		Weatherford
0/8/2014	6,814	6.46	147.85	6,804	-204	-207	119	0.40	-0.39	0.41	260.00		Weatherford
10/8/2014	6,907	7.26	147.08	6,896	-213	-217	125	0.87	0.86	-0.83	271.11		Weatherford
10/8/2014	7,001	7.28	147.57	6,989	-222	-227	131	0.07	0.02	0.52	283.01	1	Weatherford
10/8/2014	7,094	6.98	149.13	7,082	-232	-237	137	0.38	-0.32	1.68	294.55		Weatherford
10/8/2014	7,190	7.88	148.43	7,177	-243	-247	144	0.94	0.94	-0.73	306.96	1	Weatherford
10/10/2014	7,284	7.79	149.10	7,270	-253	-258	150	0.14	-0.10	0.71	319,77		Weatherford
10/10/2014	7,377	7.01	148.91	7,362	-263	-269	156	0.84	-0.84	-0.20	331.75	MWD	Weatherford
10/10/2014	7,471	7.47	147.46	7,455	-273	-279	163	0.53	0.49	-1.54	343.60	MWD	Weatherford
10/10/2014	7,564	7.51	150.42	7,548	-283	-289	169	0.42	0.04	3.18	355.72	MWD	Weatherford
10/10/2014	7,658	7.09	151.26	7,641	-294	-299	175	0.46	-0.45	0.89	367.66	MWD	Weatherford
10/11/2014	7,752	7.01	154.70	7,734	-304	-310	180	0.46	-0.09	3.66	379.19	MWD	Weatherford
10/11/2014	7,845	6.80	151.59	7,826	-313	-320	185	0.46	-0.23	-3.34	390.37	MWD	Weatherford
10/11/2014	7,939	6.40	153.48	7,920	-323	-329	190	0.48	-0.43	2.01	401.17	MWD	Weatherford
10/11/2014	8,032	6.91	148.38	8,012	-332	-339	195	0.84	0.55	-5.48	411.94	MWD	Weatherford
10/11/2014	8,127	6.86	149.12	8,106	-342	-348	201	0.11	-0.05	0.78	423.33	MWD	Weatherford
10/11/2014	8,219	6.76	145.50	8,198	-351	-358	207	0.48	-0.11	-3.93	434.23	MWD	Weatherford
10/11/2014	8,313	5.77	125.84	8,291	-358	-365	214	2.50	-1.05	-20.91	444.34	MWD	Weatherford
10/11/2014	8,407	6.26	116.88	8,385	-363	-370	222	1.13	0.52	-9.53	454.16		Weatherford
10/11/2014	8,483	6.01	113.15	8,460	-366	-373	230	0.62	-0.33	-4.91	462.28		Weatherford
10/11/2014	8,563	6.35	109.43	8,540	-369	-377	238	0.66	0.43	-4.65	470.89		Weatherford
10/11/2014	8,595	7.42	99.41	8,572	-369	-377	241	5.02	3.34	-31.31	474.71		Weatherford
10/11/2014	8,626	9.36	89.55	8,602	-370	-378	246	7.77	6.26	-31.81	479.21		Weatherford
10/11/2014	8,657	11.76	79.22	8,633	-369	-377	252	9.83	7.74	-33.32	484.87		Weatherford
10/11/2014	8,688	13.90	70.95	8,663	-367	-375	258	9.08	6.90	-26.68	491.74		Weatherford
10/11/2014	8,720	15.95	63.66	8,694	-363	-372	266	8.68	6.41	-22.78	499.96		Weatherford
10/11/2014	8,751	17.66	53.41	8,724	-358	-367	273	11.02	5.52	-33.06	508.89		Weatherford
10/11/2014	8,782	18.45	42.47	8,753	-352	-361	280	11.21	2.55	-35.29	518.46		Weatherford
10/11/2014	8,813	18.82	31.82	8,782	-344	-353	286	11.03	1.19	-34.35	528.33		Weatherford
10/11/2014	8,844	19.32	19.80	8,812	-334	-344	291	12.75	1.61	-38.77	538.40		Weatherford
10/11/2014	8,876	20.43	9.94	8,842	-324	-334	294	11.02	3.47	-30.81	549.24	MWD	Weatherford

NEV	VFI	ELD
3)	K	

Directional Survey

Legal Well Name			Wellbore Name				
Ranch 15-10-3-3-2W-UW			Original Hole				
	Surface Legal Location		Field Name		Well Type		Well Configuration Type
	SWSE 368FSL 2311FEL S	SEC10 T3S R2W MERU	UINTA CB-WASAT	TCH HORZ	Development		Horizontal
Well RC	County	State/Province		Spud Date	7	Final Ric	Release Date
500378194	Duchesne	Utah		9/24	/2014 06:00		12/22/2014 16:00

00378194			uchesne			tah			0127	/2014 06:0		12/2	22/2014 16:00
Survey Data			6-12		Kun -	ENGL	N NEC	STATE OF					
Date	MD (ftKB)	Incl (°)	Azm (°)	TVD (ftKB)	VS (ft)	NS (ft)	EW (ft)	DLS (°/100ft)	Build (°/100ft)	Turn (°/100ft)	Unwrap	Method	Cuquay Company
10/11/2014	8,907	22.95	7.36	8,871	-312	-322	295	8.69	8.13	-8.32	Displace (ft) 560.70		Survey Company Weatherford
10/11/2014	8,938	26.24	5.91	8,899	-300	-309	297	10.79	10.61	-4.68	573.60	MWD	Weatherford
10/11/2014	8,969	29.26	4.44	8,926	-285	-295	298	9.99	9.74	-4.74	588.03	MWD	Weatherford
10/11/2014	9,000	32.36	3.28	8,953	-269	-279	299	10.18	10.00	-3.74	603.90	MWD	Weatherford
10/11/2014	9,032	35.27	1.93	8,979	-252	-261	300	9.39	9.09	-4.22	621.71	MWD	Weatherford
10/11/2014	9,063	38.36	1.08	9,004	-233	-243	300	10.10	9.97	-2.74	640.28	MWD	Weatherford
10/11/2014	9,094	41.38	359.94	9,028	-213	-223	301	10.02	9.74	1157.61	660.15	MWD	Weatherford
10/11/2014	9,125	44.30	359.95	9,051	-192	-202	301	9.42	9.42	0.03	681.23	MWD	Weatherford
10/11/2014	9,156	47.42	1.00	9,072	-170	-180	301	10.35	10.06	-1157.90	703.47	MWD	Weatherford
10/11/2014	9,188	51.14	1.73	9,093	-146	-155	301	11.75	11.63	2.28	727.72	MWD	Weatherford
10/11/2014	9,219	54.25	2.72	9,112	-121	-131	302	10.35	10.03	3.19	752.38	MWD	Weatherford
10/11/2014	9,250	57.07	3.51	9,130	-95	-105	304	9.34	9.10	2.55	777.97	MWD	Weatherford
10/11/2014	9,281	60.09	3.65	9,146	-69	-79	305	9.75	9.74	0.45	804.42	MWD	Weatherford
10/11/2014	9,312	63.84	4.34	9,160	-42	-52	307	12.26	12.10	2.23	831.78	MWD	Weatherford
10/11/2014	9,344	67.27	4.30	9,174	-12	-23	309	10.72	10.72	-0.13	860.91	MWD	Weatherford
10/11/2014	9,375	70.12	4.19	9,185	16	6	312	9.20	9.19	-0.35	889.78	MWD	Weatherford
10/11/2014	9,406	73.51	3.87	9,194	46	36	314	10.98	10.94	-1.03	919.23		Weatherford
10/11/2014	9,437	76.88	3.43	9,202	76	66	316	10.96	10.87	-1.42	949.20		Weatherford
10/11/2014	9,469	79,76	2.94	9,209	107	97	317	9.12	9.00	-1.53	980.53		Weatherford
10/11/2014	9,500	83.20	2.71	9,213	138	127	319	11.12	11.10	-0.74			Weatherford
10/11/2014	9,531	86.42	1.83	9,216	169	158	320	10.76	10.39		1,042.05		Weatherford
10/11/2014	9,562	88.59	1.50	9,218	200	189	321	7.08	7.00	-1.06			Weatherford
10/11/2014	9,593	88.77	0.93	9,218	231	220	322	1.93	0.58		1,104.01		Weatherford
10/11/2014	9,625	88.58	0.23	9,219	263	252	322	2.27	-0.59		1,136.00		Weatherford
10/11/2014	9,665	89.01	0.17	9,220	303	292	322	1.09	1.08		1,176.00		Weatherford
10/11/2014	9,750	88.46	359.04	9,222	387	377	321	1.48	-0.65	422.20			Weatherford
10/11/2014	9,843	88.21	357.86	9,224	480	470	319	1.30	-0.27	-1.27			Weatherford
10/11/2014	9,937	87.90	356.81	9,228	574	564	315	1.16	-0.33		1,447.88		Weatherford
10/11/2014	10,031	86.91	357.77	9,232	668	658	310	1.47	-1.05	1.02	1,541.78	MWD	Weatherford

www.newfield.com

N	EWFIELI)
		ı
ш	200	a

Directional Survey

Legal Well Name			Wellbore Name				
Ranch 15-10-3-3-2W-UW			Original Hole				
	Surface Legal Location		Fleld Name		Well Type		Well Configuration Type
	SWSE 368FSL 2311FEL S	SEC10 T3S R2W MERU	UINTA CB-WASA1	CH HORZ	Development		Horizontal
Well RC	County	State/Province		Spud Date		Final Rio	Release Date
500378194	Duchesne	Utah		9/24	/2014 06:00	"	12/22/2014 16:00

500378194]D	uchesne		L	ltah			9/24	/2014 06:0	0	12/2	22/2014 16:00
Survey Data			10 mm				VID-1014			100			
Date	MD (ftKB)	Incl (°)	Azm (°)	TVD (ftKB)	VS (ft)	NS (ft)	EW (ft)	DLS (°/100ft)	Build (°/100ft)	Turn (°/100ft)	Unwrap Displace (ft)	Method	Supray Company
10/11/2014	10,124	86.35	358.36	9,237	760	751	307	0.87	-0.60	0.63	1,634.62		Survey Company Weatherford
10/11/2014	10,218	85.55	0.92	9,244	854	844	306	2.85	-0.85	-380.26	1,728.37	MWD	Weatherford
10/11/2014	10,312	86.66	1.00	9,250	948	938	308	1.18	1.18	0.09	1,822.15	MWD	Weatherford
10/11/2014	10,405	86.79	359.92	9,256	1,040	1,031	309	1.17	0.14	385.94	1,915.00	MWD	Weatherford
10/11/2014	10,499	85.93	359.31	9,262	1,134	1,125	308	1.12	-0.91	-0.65	2,008.81	MWD	Weatherford
10/11/2014	10,593	86.85	358.54	9,268	1,228	1,219	306	1.28	0.98	-0.82	2,102.62	MWD	Weatherford
10/11/2014	10,686	85.98	356.89	9,273	1,320	1,311	303	2.00	-0.94	-1.77	2,195.44	MWD	Weatherford
10/11/2014	10,780	86.67	357.19	9,279	1,414	1,405	298	0.80	0.73	0.32	2,289.24	MWD	Weatherford
10/11/2014	10,874	86.79	358.43	9,285	1,507	1,499	294	1.32	0.13	1.32	2,383.09	MWD	Weatherford
10/11/2014	10,967	86.17	354.81	9,291	1,600	1,591	289	3.94	-0.67	-3.89	2,475.90	MWD	Weatherford
10/11/2014	11,058	87.00	358.54	9,296	1,690	1,682	283	4.19	0.91	4.10	2,566.72	MWD	Weatherford
10/11/2014	11,155	86.60	1.95	9,301	1,787	1,779	284	3.53	-0.41	-367.62	2,663.55	MWD	Weatherford
10/11/2014	11,248	86.61	3.05	9,307	1,880	1,872	288	1.18	0.01	1.18	2,756.39	MWD	Weatherford
10/11/2014	11,342	87.22	2.03	9,312	1,974	1,965	292	1.26	0.65	-1.09	2,850.25	MWD	Weatherford
10/11/2014	11,436	87.35	0.89	9,316	2,068	2,059	294	1.22	0.14	-1.21	2,944.14	MWD	Weatherford
10/11/2014	11,529	87.48	358.85	9,321	2,161	2,152	294	2.20	0.14	384.90	3,037.04	MWD	Weatherford
10/11/2014	11,623	87.53	357.74	9,325	2,254	2,246	291	1.18	0.05	-1.18	3,130.95	MWD	Weatherford
10/11/2014	11,717	88.21	356.47	9,328	2,348	2,340	287	1.53	0.72	-1.35	3,224.88	MWD	Weatherford
10/11/2014	11,810	87.41	358.46	9,332	2,441	2,433	283	2.30	-0.86	2.14	3,317.81	MWD	Weatherford
10/11/2014	11,904	87.10	359.33	9,336	2,534	2,527	281	0.98	-0.33	0.93	3,411.70	MWD	Weatherford
10/11/2014	11,998	87.53	0.62	9,341	2,628	2,620	281	1.45	0.46	-381.61	3,505.60	MWD	Weatherford
10/11/2014	12,091	87.16	0.05	9,345	2,721	2,713	281	0.73	-0.40	-0.61	3,598.50	MWD	Weatherford
10/11/2014	12,185	87.54	359,10	9,349	2,815	2,807	281	1.09	0.40	381.97	3,692.39	MWD	Weatherford
10/11/2014	12,279	87.09	359.60	9,354	2,909	2,901	280	0.72	-0.48	0.53	3,786.29	MWD	Weatherford
10/11/2014	12,372	86.91	359.07	9,359	3,001	2,994	278	0.60	-0.19	-0.57	3,879.16	MWD	Weatherford
10/11/2014	12,466	87.90	359.50	9,363	3,095	3,088	277	1.15	1.05	0.46	3,973.07	MWD	Weatherford
10/11/2014	12,560	87.66	359.80	9,366	3,189	3,182	277	0,41	-0.26	0.32	4,066.99	MWD	Weatherford
10/11/2014	12,654	87.47	1.14	9,370	3,283	3,276	277	1.44	-0.20	-381.55	4,160.91	MWD	Weatherford
10/11/2014	12,747	87.53	1.60	9,374	3,376	3,369	280	0.50	0.06	0.49	4,253.82	MWD	Weatherford
www nawf	ield com							l.					

www.newfield.com

N	E	W	F	I	E	LD
	2	N/	6			- 12

Directional Survey

Legal Well Name			Wellbore Name				
Ranch 15-10-3-3-2W-UW			Original Hole				
API/UWI	Surface Legal Location		Field Name		Well Type		Well Configuration Type
	SWSE 368FSL 2311FEL SEC	C10 T3S R2W MERU	UINTA CB-WASAT	TCH HORZ	Development		Horizontal
Well RC	County	State/Province		Spud Date		Final Ric	Release Date
500378194	Duchesne	Utah		9/24	/2014 06:00		12/22/2014 16:00

000378194			uchesne			tan			9/24	/2014 06:0	0	12/2	22/2014 16:00
urvey Data							18 7/17	TO THE OWN				13 11	
Date	MD (MKB)	Incl (°)	Azm (°)	TVD (ftKB)	VS (ft)	NS (ft)	EVV (ft)	DLS (°/100ft)	(°/100ft)	Turn (°/100ft)	Unwrap Displace (ft)	Method	Cup in Company
0/11/2014	12,841	87.47	1.97	9,379	3,470	3,462	283	0.40	-0.06	0.39	4,347.73		Survey Company Weatherford
0/11/2014	12,935	87.84	2.02	9,382	3,564	3,556	286	0.40	0.39	0.05	4,441.65	MWD	Weatherford
0/11/2014	13,028	87.47	2.44	9,386	3,657	3.649	290	0.60	-0.40	0.45	4,534.57	MWD	Weatherford
0/11/2014	13,122	87.96	1.92	9,390	3,751	3,743	293	0.76	0.52	-0.55	4,628.50	MWD	Weatherford
0/11/2014	13,216	86.24	357.70	9,395	3,844	3,837	293	4.84	-1.83	378.49	4,722.35	MWD	Weatherford
0/11/2014	13,342	85.00	355.33	9,404	3,969	3,962	285	2.12	-0.98	-1.88	4,847.97	MWD	Weatherford
0/11/2014	13,435	87.88	357.13	9,410	4,062	4,055	279	3.65	3.10	1.94	4,940.78	MWD	Weatherford
0/11/2014	13,529	87.72	0.87	9,414	4,156	4,149	277	3.98	-0.17	-379.00	5,034.69	MWD	Weatherford
0/11/2014	13,623	88.03	1.67	9,417	4,250	4,243	279	0.91	0.33	0.85	5,128.63	MWD	Weatherford
0/11/2014	13,716	87.53	1.93	9,421	4,342	4,336	282	0.61	-0.54	0.28	5,221.56	MWD	Weatherford
0/11/2014	13,810	86.92	0.87	9,425	4,436	4,429	285	1.30	-0.65	-1.13	5,315.44	MWD	Weatherford
0/11/2014	13,904	86.29	0.03	9,431	4,530	4,523	285	1.12	-0.67	-0.89	5,409.28	MWD	Weatherford
0/11/2014	13,997	86.54	0.21	9,437	4,623	4,616	286	0.33	0.27	0.19	5,502.10	MWD	Weatherford
0/11/2014	14,091	87.16	2.17	9,442	4,717	4,710	288	2.18	0.66	2.09	5,595.95	MWD	Weatherford
0/11/2014	14,185	87.16	2.32	9,447	4,811	4,804	291	0.16	0.00	0.16	5,689.83	MWD	Weatherford
0/11/2014	14,278	86.73	1.89	9,452	4,904	4,897	295	0.65	-0.46	-0.46	5,782.70	MVVD	Weatherford
0/11/2014	14,372	86.55	1.43	9,457	4,997	4,990	297	0.52	-0.19	-0.49	5,876.54		Weatherford
0/11/2014	14,466	86.61	359.97	9,463	5,091	5,084	299	1.55	0.06	381.43	5,970.37		Weatherford
0/11/2014	14,559	86.86	359.40	9,468	5,184	5,177	298	0.67	0.27	-0.61	6,063.22		Weatherford
0/11/2014	14,653	86.91	359.45	9,473	5,278	5,271	297	0.08	0.05		6,157.08		Weatherford
0/11/2014	14,747	85.87	359.70	9,479	5,371	5,365	296	1.14	-1.11	0.27	6,250.89		Weatherford
0/11/2014	14,840	87.23	1.29	9,485	5,464	5,458	297	2.25	1.46	-385.39	ŕ		Weatherford
0/11/2014	14,934	86.17	1.84	9,490	5,558	5,551	300	1.27	-1.13	0.59	,		Weatherford
0/11/2014	15,028	88.46	1.79	9,494	5,652	5,645	303	2.44	2.44		6,531.45		Weatherford
0/11/2014	15,121	86.79	359.70	9,498	5,745	5,738	304	2.88	-1.80	384.85	,		Weatherford
0/11/2014	15,215	88.15	359.64	9,502	5,839	5,832	303	1.45	1.45	-0.06			Weatherford
0/11/2014	15,309	85.99	357.14	9,507	5,932	5,926	301	3.51	-2.30	-2.66			Weatherford
0/11/2014	15,403	87.66	359.09	9,512	6,026	6,020	298	2.73	1.78	2.07	6,905.98		Weatherford
0/11/2014	15,496	87.54	1.16	9,516	6,119	6,113	298	2.23	-0.13	-384.87	6,998.89	MWD	Weatherford

Sundry Number: 62478 API Well Number: 43013522960000 NEWFIELD

Directional Survey

Legal Well Name					
Ranch 15-10-3-3-2W-UV	V		Wellbore Name		
API/UWI	Surface Legal Location		Original Hole		
43013522960000 Well RC	SWSE 368FSL 2311FEL SE	EC10 T3S R2W MERU	UINTA CB-WASATCH HO	DRZ Development	Weil Configuration Type
500378194	County Duchesne	State/Province Utah	Spud Da		Horizontal Final Rig Release Date

500578194			Duchesne			Jtah			9/2	4/2014 06	.00	Final Rig Rel	ease Date 2/22/2014 16:00
Survey Da	ta				المتالية ال						.00	12	72272014 16:00
Date	MD (ftKB)	Incl (°)	Azm (°)	TVD (ftKB)	VS (ft)	NS (ft)	PTS A L YOU		Build	Turn	Unwrap		
10/11/2014	15,590			9,521	6,213	6,206	EW (ft)	DLS (°/100f		(°/100ft)	Displace (f) Method 7 MWD	Survey Compar Weatherford
10/11/2014	15,684	87.62	6.83	9,525	6,306	6,300	313	1.97	7 0.49	1.91	7,186.6	7 8410/0	
10/11/2014	15,777	88.83	3.27	9,528	6,399	6,392							Weatherford
10/11/2014	15,871						321	4.04		-3.83	7,279.6	MWD	Weatherford
10/11/2014				9,532	6,493	6,486	322	6.18	-2.50	377.32	7,373.49	MWD	Weatherford
	15,964		358.52	9,537	6,586	6,579	319	1.06	0.86	0.61	7,466.35	MWD	Weatherford
0/11/2014	16,058	86.85	357.20	9,542	6,679	6,673	315	1.48	-0.46	-1.40	7,560.23	MWD	Weatherford
0/11/2014	16,152	87.23	357.91	9,546	6,773	6,767	311	0.86	0.40	0.76	7,654.10	MWD	Weatherford
0/11/2014	16,245	87.22	356.91	9,551	6,866	6,859	307	1.07	-0.01	-1.08			
0/11/2014	16,339	87.16	357.63	9,556	6,959	6,953	303	0.77					Weatherford
0/11/2014	16,433	86.98	358.44	9,560	7,053				-0.06	0.77	7,840.88		Weatherford
0/11/2014	16,526	87.16				7,047	300	0.88	-0.19	0.86	7,934.75	MWD	Weatherford
0/11/2014			356.37	9,565	7,146	7,140	295	2.23	0.19	-2.23	8,027.63	MWD	Weatherford
	16,620	87.84	355.40	9,569	7,239	7,233	289	1.26	0.72	-1.03	8,121.54	MWD	Weatherford
0/11/2014	16,713	86.54	356.86	9,574	7,331	7,326	282	2.10	-1.40	1.57	8,214.42	MWD	Weatherford
0/11/2014	16,807	87.72	2.74	9,578	7,425	7,420	282	6.37	1.26	-376.72	8,308.26	MWD	Weatherford
0/11/2014	16,901	87.78	1.26	9,582	7,519	7,514	285	1.57	0.06	-1.57	8,402.18		
/11/2014	16,994	87.84	1.56	9,586	7,612	7,607	288	0.33	0.06				Weatherford
)/11/2014	17,088	87.90	1.89	9,589	7,706	7,701				0.32	8,495.12		Weatherford
/11/2014	17,182	87.78	1.28				290	0.36	0.06	0.35	8,589.05	MWD	Weatherford
/11/2014				9,593	7,800	7,794	293	0.66	-0.13	-0.65	8,682.98	MWD	Weatherford
	17,275	88.52	1.93	9,596	7,893	7,887	296	1.06	0.80	0.70	8,775.93	MWD	Weatherford
/11/2014	17,369	86.67	2.40	9,600	7,987	7,981	299	2.03	-1.97	0.50	8,869.85	MWD	Weatherford
/11/2014	17,462	87.41	4.17	9,604	8,080	8,074	305	2.06	0.80	1.90	8,962.72		Weatherford
/11/2014	17,556	87.90	3.47	9,608	8,173	8,168	311	0.91	0.52		9,056.64		
/11/2014	17,650	86.61	1.70	9,613	8,267	8,261	315	2.33	-1.37				Weatherford
/11/2014	17,743	86.73	1.62	9,618	8,360	8,354					9,150.53		Weatherford
/11/2014	17,837	87.10					318	0.15	0.13	-0.09	9,243.37	MWD	Weatherford
11/2014			1.41	9,623	8,454	8,448	320	0.45	0.39	-0.22	9,337.23	DWN	Weatherford
	17,931	86.55	2.63	9,628	8,548	8,542	323	1.42	-0.59	1.30	9,431.09	MWD	Weatherford
11/2014	18,024	87.16	0.30	9,634	8,641	8,635	326	2.59	0.66	-2.51	9,523.94	AWD I	Weatherford
11/2014	18,118	86.61	359.69	9,639	8,734	8,729	326	0.87	-0.59	382.33	9,617.80 M		Veatherford
11/2014	18,212	86.67	0.61	9,644	8,828	8,822	326	0.98	0.06				
								5.55	0.00	-302,00	9,711.64 N	ער מאאוי	Weatherford

www.newfield.com

Sundry Number: 62478 API Well Number: 43013522960000 NEWFIELD

Directional Survey

Survey Data	Ducheshe	Utah		9/24	/2014 06:00		12/22/2014 16:00
500378194	County Duchesne	State/Province		Spud Date		Final Ri	g Release Date
43013522960000 Well RC	SWSE 368FSL 2311FEL SE	C10 T3S R2W MERU	UINTA CB-WASAT	CH HORZ	Well Type Development		Well Configuration Type Horizontal
API/UWI	Surface Legal Location		Original Hole		Tin 11-		
Ranch 15-10-3-3-2W-U	JW.		Wellbore Name				
Legal Well Name							

Date	MD (ftKB)	Incl (°)	Azm (°)	TVD (ftKB)	VS (ft)	NS (ft)	EW (ft)	DLS (°/100ft)	Build (°/100ft)	Turn (°/100ft)	Unwrap	11339	177
0/11/2014	18,305	86.30	359.25	9,650	8,921	8,915	326	1.51	-0.40	385.63	Displace (ft) 9,804.46	Method MWD	Survey Company Weatherford
0/11/2014	18,399	86.48	357.85	9,656	9,015	9,009	324	1.50	0.19	-1.49	9,898.27	MAND	1A/
0/11/2014	18,493	00.40	050.00						0.10	-1.43	9,090.27	INIVAD	Weatherford
0/11/2014	10,493	86.49	356.37	9,662	9,108	9,103	319	1.57	0.01	-1.57	9,992.09	MWD	Weatherford
0/11/2014	18,586	86.29	356.75	9,667	9,201	9,195	313	0.46	-0.22	0.41	10,084.9	MWD	Weatherford
0/11/2014	18,680	87.04	356.13	9,673	9,294	9,289	307	1.03	0.80	-0.66	10,178.7	MWD	Weatherford
0/11/2014	18,773	87.00	358.19	9,678	9,387	9,382	303	2.21	-0.04	2.22	5 10,271.6	MMAID	
0/11/2014	18,867	86.42	2.37	9,683	9.480	9,476	200				1		Weatherford
2/44/2044	10.00				9,480	9,476	303	4.48	-0.62	-378.53	10,365.4	MWD	Weatherford
0/11/2014	18,961	88.15	4.70	9,688	9,574	9,569	309	3.08	1.84	2.48	10,459.3	MWD	Weatherford
0/11/2014	19,015	84.94	2.57	9,691	9,628	9,623	313	7.13	-5.94	-3.94	10,513.2	MWD	Weatherford
0/11/2014	19,045	84.94	2.57	9,693	9,658	0.050	- 011				1		T T G G () G () G ()
		001	2.07	9,093	9,000	9,653	314	0.00	0.00	0.00	10,543.1	Extrap.	Weatherford

www.newfield.com

Page 8/8

Report Printed: 3/25/2015

			1
	STATE OF UTAH		FORM 9
	DEPARTMENT OF NATURAL RESOURCES DIVISION OF OIL, GAS, AND MININ		5.LEASE DESIGNATION AND SERIAL NUMBER: Patented
SUNDR	RY NOTICES AND REPORTS O	N WELLS	6. IF INDIAN, ALLOTTEE OR TRIBE NAME:
	oposals to drill new wells, significantly de reenter plugged wells, or to drill horizont n for such proposals.		7.UNIT or CA AGREEMENT NAME:
1. TYPE OF WELL Oil Well			8. WELL NAME and NUMBER: RANCH 15-10-3-3-2W-UW
2. NAME OF OPERATOR: NEWFIELD PRODUCTION CO	OMPANY		9. API NUMBER: 43013522960000
3. ADDRESS OF OPERATOR: Rt 3 Box 3630 , Myton, UT		PHONE NUMBER: Ext	9. FIELD and POOL or WILDCAT: NORTH MYTON BENCH
4. LOCATION OF WELL FOOTAGES AT SURFACE: 0368 FSL 2311 FEL			COUNTY: DUCHESNE
QTR/QTR, SECTION, TOWNSH	HIP, RANGE, MERIDIAN: 10 Township: 03.0S Range: 02.0W Meridia	an: U	STATE: UTAH
11. CHEC	K APPROPRIATE BOXES TO INDICATE	NATURE OF NOTICE, REPOR	RT, OR OTHER DATA
TYPE OF SUBMISSION		TYPE OF ACTION	
	ACIDIZE	ALTER CASING	CASING REPAIR
NOTICE OF INTENT Approximate date work will start:	CHANGE TO PREVIOUS PLANS	CHANGE TUBING	CHANGE WELL NAME
7,550 0000000000000000000000000000000000	CHANGE WELL STATUS	COMMINGLE PRODUCING FORMATIONS	CONVERT WELL TYPE
SUBSEQUENT REPORT Date of Work Completion:	DEEPEN	FRACTURE TREAT	NEW CONSTRUCTION
8/4/2015	OPERATOR CHANGE	PLUG AND ABANDON	PLUG BACK
SPUD REPORT	✓ PRODUCTION START OR RESUME	RECLAMATION OF WELL SITE	RECOMPLETE DIFFERENT FORMATION
Date of Spud:	REPERFORATE CURRENT FORMATION	SIDETRACK TO REPAIR WELL	TEMPORARY ABANDON
	TUBING REPAIR	VENT OR FLARE	WATER DISPOSAL
DRILLING REPORT Report Date:	WATER SHUTOFF	SI TA STATUS EXTENSION	APD EXTENSION
Report Date.		31 TA STATUS EXTENSION	
	WILDCAT WELL DETERMINATION	OTHER	OTHER:
An artificial Lift Syst began producing to	completed operations. Clearly show all tem was installed on the above facilities @ 1:30 PM 8/4/2015 4" choke @ 259 psi TP W/ 50 p	e mentioned well. Well 5 (currently flowing on	Accepted by the
NAME (PLEASE PRINT)	PHONE NUMBER		
Mandie Crozier	435 646-4825	Regulatory Tech DATE	
SIGNATURE N/A		8/18/2015	

						_
	STATE OF UTAH				FORM	9
ı	DEPARTMENT OF NATURAL RESOUR DIVISION OF OIL, GAS, AND MI		i	5.LEASE D	ESIGNATION AND SERIAL NUMBER	₹:
SUNDR	RY NOTICES AND REPORTS	ON	WELLS	6. IF INDIA	N, ALLOTTEE OR TRIBE NAME:	_
	posals to drill new wells, significantly reenter plugged wells, or to drill horiz n for such proposals.			7.UNIT or	CA AGREEMENT NAME:	_
1. TYPE OF WELL Oil Well				1 -	AME and NUMBER: 15-10-3-3-2W-UW	
2. NAME OF OPERATOR: NEWFIELD PRODUCTION CO	DMPANY			9. API NUN 4301352	MBER: 22960000	_
3. ADDRESS OF OPERATOR: Rt 3 Box 3630 , Myton, UT	, 84052 435 646-482		NE NUMBER: t		nd POOL or WILDCAT: MYTON BENCH	_
4. LOCATION OF WELL FOOTAGES AT SURFACE: 0368 FSL 2311 FEL				COUNTY: DUCHESI	NE	
QTR/QTR, SECTION, TOWNSH	HIP, RANGE, MERIDIAN: 10 Township: 03.0S Range: 02.0W Mei	ridian:	U	STATE: UTAH		
11. CHECI	K APPROPRIATE BOXES TO INDICA	ATE N	ATURE OF NOTICE, REPOR	T, OR OT	HER DATA	
TYPE OF SUBMISSION			TYPE OF ACTION			
	ACIDIZE		LITER CASING		CASING REPAIR	_
NOTICE OF INTENT Approximate date work will start:	CHANGE TO PREVIOUS PLANS		HANGE TUBING		CHANGE WELL NAME	
Approximate date work will start.	CHANGE WELL STATUS		COMMINGLE PRODUCING FORMATIONS		CONVERT WELL TYPE	
SUBSEQUENT REPORT Date of Work Completion:	DEEPEN	☐ F	RACTURE TREAT		NEW CONSTRUCTION	
8/27/2014	OPERATOR CHANGE		LUG AND ABANDON		PLUG BACK	
 	PRODUCTION START OR RESUME		ECLAMATION OF WELL SITE	_	RECOMPLETE DIFFERENT FORMATION	
SPUD REPORT Date of Spud:	REPERFORATE CURRENT FORMATION	_	SIDETRACK TO REPAIR WELL		EMPORARY ABANDON	
DRILLING REPORT	TUBING REPAIR		ENT OR FLARE		VATER DISPOSAL	
Report Date:	WATER SHUTOFF	∟ s	I TA STATUS EXTENSION		APD EXTENSION	
	WILDCAT WELL DETERMINATION	√ c	OTHER	OTHER:	Form 7	
l .	completed operations. Clearly shows ation with Dustin Doucet, a for the above mentioned v	attac		oil, FOR	mes, etc. ccepted by the tah Division of Gas and Mining RECORD ONLY anuary 22, 2016	
NAME (PLEASE PRINT)	PHONE NUM	BER	TITLE			_
Heather Calder	435 646-4936	JLI\	Production Technician			
SIGNATURE N/A			DATE 1/22/2016			

RECEIVED: Jan. 22, 2016

STATE OF UTAH

DEPARTMENT OF NATURAL RESOURCES DIVISION OF OIL, GAS AND MINING

EUDM.	7

Well name an	d number: Ra	ınch 15-10-3-3-2	W-MW			
API number:						
		action 10 T	Sumahin 3S Danas	21/1/	o Di	ichesne
		oduction Compa	ownship <u>3S</u> Range	200	County _DC	icilesile
·			ПУ	_		
Address:	Route #3 Bo			=		
	city Myton		state Ut zip 84052	-	Phone: (4	135) 646-3721
	ctor: Pro Petro			_		
Address:	1422 East 1					
	city Vernal		state UT zip 84078	-	Phone: (435) 789-7407
Water encoun	tered (attach a	additional pages	as needed):			
	DE	PTH	VOLUME			QUALITY
	FROM	ТО	(FLOW RATE OR I	HEAD)		(FRESH OR SALTY)
	410		12			Fresh
Formation top		See Complet	ion Repor 2			3
(Top to Bottom	1)	1	5			6
	= 7	7	8			9
	10)	11			12
If an analysis	has been mad	e of the water e	ncountered, please atta	ach a co _l	by of the re	eport to this form.
			to the best of my knowled	lge.		
NAME (PLEASE PRI	Heather Ca			TITLE F	Regulatory	Associate
SIGNATURE	leastly (aleler		DATE _	/22/2016	

	STATE OF UTAH				FORM 9
ı	DEPARTMENT OF NATURAL RESOUF DIVISION OF OIL, GAS, AND M			5.LEASE DESIGNATION Patented	I AND SERIAL NUMBER:
SUNDR	RY NOTICES AND REPORTS	S ON	WELLS	6. IF INDIAN, ALLOTTE	E OR TRIBE NAME:
	oposals to drill new wells, significantl reenter plugged wells, or to drill horiz n for such proposals.			7.UNIT or CA AGREEM	ENT NAME:
1. TYPE OF WELL Oil Well				8. WELL NAME and NU RANCH 15-10-3-3	
2. NAME OF OPERATOR: NEWFIELD PRODUCTION CO	DMPANY			9. API NUMBER: 43013522960000	
3. ADDRESS OF OPERATOR: Rt 3 Box 3630 , Myton, UT	, 84052 435 646-48		NE NUMBER:	9. FIELD and POOL or NORTH MYTON BEN	
4. LOCATION OF WELL FOOTAGES AT SURFACE: 0368 FSL 2311 FEL				COUNTY: DUCHESNE	
QTR/QTR, SECTION, TOWNSH	HIP, RANGE, MERIDIAN: 10 Township: 03.0S Range: 02.0W Me	eridian:	U	STATE: UTAH	
11. CHECI	K APPROPRIATE BOXES TO INDICA	ATE NA	ATURE OF NOTICE, REPOR	T, OR OTHER DATA	
TYPE OF SUBMISSION			TYPE OF ACTION		
	ACIDIZE		LTER CASING	CASING REPAIR	
NOTICE OF INTENT Approximate date work will start:	CHANGE TO PREVIOUS PLANS	□ c	HANGE TUBING	CHANGE WELL NA	ME
Approximate date work will start:	CHANGE WELL STATUS	□ c	OMMINGLE PRODUCING FORMATIONS	CONVERT WELL T	YPE
SUBSEQUENT REPORT Date of Work Completion:	DEEPEN	Пв	RACTURE TREAT	☐ NEW CONSTRUCT	ION
12/23/2014	OPERATOR CHANGE		LUG AND ABANDON	PLUG BACK	
	PRODUCTION START OR RESUME		ECLAMATION OF WELL SITE		FERENT FORMATION
SPUD REPORT Date of Spud:					
	REPERFORATE CURRENT FORMATION		IDETRACK TO REPAIR WELL	☐ TEMPORARY ABA	
DRILLING REPORT	L TUBING REPAIR		ENT OR FLARE	WATER DISPOSAL	
Report Date:	WATER SHUTOFF	∟ s	I TA STATUS EXTENSION	APD EXTENSION	
	WILDCAT WELL DETERMINATION	√ o	THER	OTHER: Daily Drilling	Reports
As per our conver	COMPLETED OPERATIONS. Clearly show sation with Dustin Doucet, Reports for the above me	attac	thed find the Daily	epths, volumes, etc. Accepted & Utah Divis Oil, Gas and FOR RECC January 2.	ion of Mining ORD ONLY
NAME (DI EASE DDINIT)	DHONE MUN	ARED I	TITLE		
Mandie Crozier	PHONE NUM 435 646-4825	IREK	TITLE Regulatory Tech		
SIGNATURE N/A			DATE 1/21/2016		

NEV	VFIELD
We will	W

Summary Rig Activity

Job Category	Job Start Date	Job End Date

port Start Date	Report End Date	24hr Activity Summary		
8/27/2014	8/28/2014	Set 60' of 20" conductor pipe.		
art Time	00:00	End Time 00:0	Comment Pete Martin Rig #16 spudded 26" hole on 08/27/2014 and drilled to 60' GL. Set 20", 52.78 conductor pipe at 60' GL and cemented to surface with Redi Mix.	3# (0.250" wall), SA53
			Kylan Cook notified UDOGM and BLM by e-mail @ 21:30 PM on 08/24/2014 to spud con 08/26/2014. (Spud date pushed back due to rain/construction of location.)	ductor hole on
port Start Date 9/4/2014	Report End Date 9/5/2014	24hr Activity Summary Rig up. Make repairs. Wait for arrival of s	are mud pump coming from TX.	
rt Time	•	End Time	Comment	
	00:00	00:0	Move rig over (Pad Well) from Ute Tribal 14-10-3-3-2W-UW. Rig up. Make repairs.	
			Wait for arrival of spare mud pump coming from TX.	
port Start Date 9/8/2014	Report End Date 9/9/2014	24hr Activity Summary Start equipment. Pick up BHA. Trip in ho	to 60' GL. Spud 17 1/2" surface hole. Drill to 180' GL. Trip out of hole. Continue to wait for 2nd mud pump.	
art Time	<u>'</u>	End Time	Comment	
	00:00	08:3	Wait for 2nd mud pump.	
			Scheduled to arrive today 09/08/2014.	
art Time	08:30	End Time 10:0	Comment Start equipment. Prepare to pick up BHA.	
rt Time	10:00	End Time 12:0	Comment Start picking up BHA. Trip in hole to 60' GL.	
art Time	12:00	End Time	Comment Spud 17 1/2" hole @ 12:00 PM on 09/08/2014. Drill from 60' GL to 180' GL while picking up BHA.	
			Received news that 2nd pump is held up at port in Cheyenne WY. Shut down and wait fo arrive 09/09/2014.	r 2nd pump. Should
art Time	14:30	End Time 16:0	Comment Circulate. Trip out of hole.	
rt Time	16:00	End Time 00:0	Comment Wait for arrival of 2nd mud pump.	
			Should arrive 09/09/2014.	
oort Start Date	Report End Date	24hr Activity Summary	Should arrive 03/03/2014.	
9/9/2014	9/10/2014	Wait for arrival of 2nd mud pump.		
rt Time	00:00	End Time 00:0	Comment Wait for arrival of 2nd mud pump.	
oort Start Date	Report End Date	24hr Activity Summary	· · ·	
9/10/2014 irt Time	9/11/2014	Wait for mud pump. Pick up directional B	IA. Trip in hole to 180' GL. Drill from 180' GL to 980' GL.	
	00:00	06:3	Wait for 2nd mud pump.	
rt Time	06:30	End Time 08:3	Comment Start picking up directional BHA. Trip in hole to 180' GL.	
art Time	08:30	End Time 09:0	Comment Install rotating head rubber.	

NEWFIELD

Summary Rig Activity

art Time		End Time		Comment
	09:00		15:00	Drill from 180' GL to 530' GL while picking up BHA.
				First sign of water flow was while making connection at 410' GL.
				Flowing about 12 gallons per minute.
				Water sample was collected.
t Time	45.00	End Time	45.00	Comment
t Time	15:00	End Time	15:30	Change rubber size in rotating head.
t fille	15:30	End Time	00:00	Drill from 530' GL to 980' GL.
ort Start Date		24hr Activity Summary		
9/11/2014	9/12/2014		45' GL. Circulate. Trip	out of hole. Start running surface casing.
t Time	00:00	End Time	11:30	Comment Drill from 980' GL to 1520' GL.
rt Time	00.00	End Time	11.50	Comment
	11:30		12:30	Change swab and fix rod washer in mud pump.
rt Time	40.00	End Time	44.00	Comment
	12:30		14:30	Drill from 1520' GL to TD @ 1645' GL.
. T'		E.J.T.		TD 17 1/2" hole @ 14:30 PM on 09/11/2014.
rt Time	14:30	End Time	16:30	Comment Circulate to trip out of hole for surface casing.
rt Time	14.50	End Time	10.50	Comment
	16:30		21:30	Trip out of hole to run surface casing.
rt Time		End Time		Comment
	21:30		22:00	Rig up to run surface casing.
				First sign of water flow was while making connection at 410' GL.
				Well flowing 8 gallons per minute at the start of running casing.
rt Time		End Time		Comment
	22:00		00:00	Run surface casing to 600' GL. Casing details will be on next report.
ort Start Date 9/12/2014		24hr Activity Summary	t- W-1-1 t O	and conference in a Well-on account place site and six down Delegation
9/12/2014 t Time	9/13/2014	Finish running casing. Circula	te. weid top cap. Ceme	ent surface casing. Wait on cement, clean pits, and rig down. Release rig.
iit iiiile	00:00	Liid Time	03:30	Run 38 joints (1627.48') of 13 3/8", 54.5#, J-55, BT&C casing with Top-Co guide shoe and float collar. 14
	00.00		00.00	centralizers spaced 10' from the shoe, on top of joints #2 & #3 then every 3rd collar to surface. Landed @
				1627.48' GL, Float Collar @ 1591.77' GL. Had to wash last 3 joints of casing down.
rt Time		End Time		Comment
	03:30		04:30	Circulate with casing on bottom.
art Time	04:30	End Time	06:00	Comment World top can from easing to conductor pipe
rt Time	04.30	End Time	00.00	Weld top cap from casing to conductor pipe.
, c 1,1116	06:00	Liid Time	06:30	Circulate casing with rig pump. Rig up Pro Petro Cementers.
		l		

NEWFIELD

Summary Rig Activity

Well Name: Ranch 15-10-3-3-2W-UW

Start Time	06:30	End Time	08:30	Comment Cement Job: Pumped 30 bbls fresh water & 40 bbls gelled water flush ahead of cement.
				Lead: Mixed and pumped 580 sacks (280 bbls) of Type V Cement with 16% Gel, 10 #/sk Gilsonite, 2#/sk Gr3, 3% Salt, and 1/4 #/sk Flocele. Mixed cement @ 12.0 ppg with yield of 2.86 cf/sk.
				Tail: Mixed and pumped 675 sacks (138 bbls) of Premium Class G Cement with 2% CaCl2, and 1/4 #/sk Flocele. Mixed cement @ 15.8 ppg with yield of 1.15 cf/sk.
				Displaced cement with 246 bbls fresh water. Bumped plug with 800# @ 08:25 AM on 09/12/2014. Floats held. 80 bbls cement to surface. Shut in well after pumping stopped.
				Kylan Cook notified UDOGM and BLM of the surface casing & cement job via e-mail on 09/10/2014 @ 21:30 PM.
Start Time	08:30	End Time	16:30	Comment Wait on cement, clean pits, and rig down.
				Release rig @ 16:30 PM on 09/12/2014.
Report Start Date	Report End Date	24hr Activity Summary	e deiling via	
9/23/2014 Start Time	9/24/2014	Finish preparation of location fo	or arilling rig.	Comment
	00:00		00:00	09/17/2014 - Drill Mouse Hole. 09/19/2014 - Final blade location. 09/20/2014 - Weld on Wellhead. 09/24/2014 - Cement cellar floor up to the top of base plate on wellhead.
				SURFACE HOLE DIRECTIONAL SURVEY DEPTHS ARE GROUND LEVEL.
				Location is ready for drilling rig.
Report Start Date 9/24/2014	Report End Date 9/25/2014	24hr Activity Summary MIRU. 2 loads moved in.		
Start Time		End Time		Comment
Start Time	06:00	End Time	18:00	MIRU - 2 loads.
Start Time	18:00	Liid Tillie	00:00	SDFN
Report Start Date 9/25/2014	Report End Date 9/26/2014	24hr Activity Summary MIRU - 20 loads		·
Start Time	00:00	End Time	06:00	Comment SDFN
Start Time	06:00	End Time	18:00	Comment MIRU - 20 loads
Start Time	18:00	End Time	00:00	Comment SDFN
Report Start Date 9/26/2014	Report End Date 9/27/2014	24hr Activity Summary MIRU - 10 loads. RU Mud pits.	set mud pumps 1 & 2	2. setup matting boards, RU camps.
Start Time		End Time		Comment
Start Time	00:00	End Time	06:00	SDFN Comment
Jian IIIIE	06:00	Liiu iiiile	20:00	MIRU - 10 loads. RU Mud pits, set mud pumps 1 & 2, setup matting boards, RU camps.
Start Time		End Time		Comment

www.newfield.com Page 3/17 Report Printed: 1/21/2016

NEWFIELD

Summary Rig Activity

Daily Operatio	ns			
Report Start Date	Report End Date	24hr Activity Summary		
9/27/2014	9/28/2014	MIRU - 11 Loads		
Start Time	0/20/2011	IEnd Time		Comment
	00:00		06:00	SDFN
Start Time		End Time		Comment
	06:00		19:00	MIRU, Set hopper house, Grass hopper, water tank, Boiler house, VFD house, 1 side of sub, 11 Loads
Start Time		End Time		Comment
	19:00		00:00	Wait on Daylight.
Report Start Date	Report End Date	24hr Activity Summary		
9/28/2014	9/29/2014	MIRU - 6 Loads		
Start Time		End Time		Comment
	00:00		06:00	SDFN
Start Time		End Time		Comment
	06:00		19:00	MIRU, Set shakers, choke house, Parts house, Set off driller side sub, Fuel tank, HPU, All three generator houses, Pin floor beams, Set draworks on the floor, 6 Loads recieved
Start Time		End Time		Comment
Start Time	19:00	Ena Time	00:00	Wait on Daylight.
Report Start Date	Report End Date	24hr Activity Summary	00.00	wait un Daylight.
9/29/2014	9/30/2014	MIRU - 5 Loads		
Start Time	3/30/2014	IEnd Time		Comment
Otali Tillie	00:00	Life Time	06:00	SDFN
Start Time	00.00	End Time	00.00	Comment
Start Time	06:00	Liid Tillie	19:30	MIRU, Set off driller side dog house on floor, Driller dog house, Put derrick on rig floor and pin derrick together &
	00.00		13.50	Pin board on derrick, set flowline skid, suit cases. Hook up HPU function test MRC & Bleed three times, Dock
				blocks to top drive, set stairs to floor, put gas buster on stand, 5 Loads of drill pipe recieved.
Start Time		End Time		Comment
Start Time	19:30	Liid Tillie	00:00	Wait on Daylight.
Report Start Date	Report End Date	24hr Activity Summary	00.00	Walt of Daylight.
9/30/2014	10/1/2014	Rig up - 2 Loads of drill pipe	4	
Start Time	10/1/2011	IEnd Time		Comment
	00:00		06:00	SDFN
Start Time		End Time		Comment
	06:00		18:00	Rig up, Raised derrick, Hang service loop, rig up ST 80, Run elec through out rig, Rig up floor, Set Peaks solids
				control equ,
Start Time		End Time		Comment
	18:00		00:00	Raise sub structure, Hook up drain hoses on sub, H/U BOP line guide shves, R/U Steam heaters in sub, H/U mud
				line F/ suit case to pumps.
Report Start Date	Report End Date	24hr Activity Summary		······································
10/1/2014	10/2/2014		spool DL. function TD. R	U to set BOP with wrangler and nipple up BOP
Start Time	1 .5,2,2511	IEnd Time		Comment
	00:00	[======================================	00:00	Ready CMS for connecting to sub, H/U jumper to CMS, Steam lines in subs, Choke line, Place floor mats, R/U
	00.00		55.55	climb assist to block, Un-pin boost cylinder, R/U catwalk guides, Hook up boomers to Bop sheaves. Finish setting
				Peaks equip. R/U flow line, H/U all elec. Set beaver slide, Stairs, suit cases, Cellar covers, Test draworks brakes,
				R/U steam lines, slip drill line on drum and wrap dead man, pull out accumulator line for sub, hook up lines to top
		[drive and function top drive
Banari Ctari Dati	Donort E D	24hr Aothritu Summer		Tailve and fullicitor top unive
Report Start Date 10/2/2014	Report End Date 10/3/2014	24hr Activity Summary		
10/2/2014	10/3/2014	Rig up		
l				

NEWFIELD

Summary Rig Activity

tart Time	00:00	End Time 00:00	Comment Rig up, Calibrate Draworks, Function rig tools, Put up Bop landing, Install Gas buster lines, Work On Top Drive, Cont to rig up peak equipment, R/U steam lines,R/U Bar Hopper, Checked pumps through 2", ran water throughout system to check for leaks, rig up accumulator lines, install cameras and run lines, RU and inspect derrick escape line
eport Start Date 10/3/2014		r Activity Summary ople and test	·
tart Time	10/4/2014 11/	End Time	Comment
	00:00	06:00	RU misc equip and rig inspection
tart Time	06:00	End Time 16:00	Comment (Start) HPJSM & Nipple Up Bop & prepare to test Bop's As Follows, Install Bottom Spacer spool, Set Stack on Well Head & Spacer Spool, Install Spacer Spool & Rotating Head, Install Choke Valve & HCR, Kill line Valves, & Choke & Kill Lines, Torque up Bop, Hook Up Koomey Lines and Function Test Bop's Modify and Fab Flow Line (Accept rig on day work @ 06:00 on 10/3/2014)
tart Time	16:00	End Time 00:00	Comment (Start) Test BOPE/Csg Rig Up testers & Test BOP's, test TIW, dart valve, Lower Kelly cock valve, and IBOP to 250 psi low 5000 psi high. man IBOP, dart, outside manifold vales, downstream manifold valves to 250 psi 5 min low - 5000 psi 10 min high, had leak on flanges for guages on crown valve(stripped bolts) change out bolts while continue to test BOP.
eport Start Date 10/4/2014		r Activity Summary st BOP Install Flex Section of Flow Line Install W	ear Bushing, P/U BHA to 541', repair hyd catwalk, PU HWDP to 730'.
tart Time	00:00	End Time 11:00	Comment Test BOP's , test annular 250 psi low 3500 psi high, test upper and lower pipe rams, 250 psi 5 min low - 5000 psi 10 min high, mudline - 250 psi 5 min low 5000 psi 10 min high, Fill csg and test 1500 psi for 30 mins, R/D Testers
tart Time	11:00	End Time 13:00	Comment Install Flex line in flow line R/U Rotating head and Hook up Oiler
tart Time	13:00	End Time 14:00	Comment Load & Strap BHA & Install Wear Bushing.
tart Time	14:00	End Time 20:30	Comment (StART) P/U BHA directional tools, Bit, Mud Motor, X/O, Mule Shoe, 2- NMDC, X/O, Float Sub, HWDP to 541'
art Time	20:30	End Time 23:30	Comment Electrition working on catwalk
art Time	23:30	End Time 00:00	Comment (Start) PU HWDP and DP f/730'
eport Start Date 10/5/2014	10/6/2014 Co	.25" sections f/ 1683' to 2456', Rig Service, Rig R	BHA Tag Cement , Rig Service, Rig Repair, Drill Shoe Track, Drill f/ 1673' to 1683', Circ Btms up and conduct FIT test, Drill epair on Top Drive. Drill f/ 2456' to 2550' Rig Repair Top Drive, Drill f/ 2550' to 3408', Adjust hyd psi on TD grabber.
art Time	00:00	End Time 01:00	Comment Cont To P/U BHA f/ 730' to 1051'
art Time	01:00	End Time 02:00	Comment Install Rotating Head Rubber
tart Time	02:00	End Time 03:00	Comment Test Dir Tools Test was Good
art Time	03:00	End Time 04:30	Comment Cont To P/U BHA f/ 1051' to 1588' Tagged Cement @ 1588'
art Time	04:30	End Time 05:00	Comment Routine Rig Service
art Time	05:00	End Time 05:30	Comment Repair Air Line On Air Boot For flow line
tart Time	05:30	End Time 07:30	Comment (Start) Drill shoe track/FIT Drill cement f/ 1588' to 1673' (Float Collar @ 1620' Float Shoe @ 1655')

NEWFIELD

Summary Rig Activity

Start Time	07:30	End Time 08:00	Comment Drill 10' of new formation for FIT. Drill 12.25" Vertical Hole Section F/ 1673' To 1683' (2 Pumps on the hole at 75
O	07.50		a piece, 600 GPM) Present Mwt 8.5 ppg
Start Time	08:00	End Time 08:30	Comment Circ Bottoms up, Spot Hi Vis Pill, FIT to 13 ppg EMW, 13 ppg- 8.5 ppg=4.5 x .052 x 1683' = 393 psi
Start Time	08:30	End Time 14:30	Comment (Start) Drill 12.25" Vertical Hole Section F/ 1683' To 2456' (2 Pumps on the hole at 105 a piece, 808 GPM) Present Mwt 8.7 ppg Pump 30 bbl Hi Vis Sweep Every 200'
Start Time	14:30	End Time 15:00	Comment Rig Service
Start Time	15:00	End Time 15:30	Comment Trouble Shoot Top Drive Gabber
Start Time	15:30	End Time 16:30	Comment (Start) Drill 12.25" Vertical Hole Section F/ 2456' To 2550' (2 Pumps on the hole at 105 a piece, 808 GPM) Present Mwt 8.8 ppg Pump 30 bbl Hi Vis Sweep Every 200'
Start Time	16:30	End Time 17:00	Comment Trouble Shoot Top Drive Gabber
Start Time	17:00	End Time 23:30	Comment Drill 12.25" Vertical Hole Section F/ 2550' To 3408' (2 Pumps on the hole at 105 a piece, 808 GPM) Present Mwt 8.9 ppg Pump 30 bbl Hi Vis Sweep Every 200'
Start Time	23:30	End Time 00:00	Comment Adjust Hyd psi on TD grabber
Report Start Date 10/6/2014		ctivity Summary f/3408'- 5094' Rig Service, Drill f/ 5094' to 549	5'
Start Time	00:00	End Time 16:30	Comment Drill 12.25" Vertical Hole Section f/ 3408' To 5094' (2 Pumps on the hole at 105 a piece, 808 GPM) Present Mwt 9.1 ppg Pump 30 bbl Hi Vis Sweep Every 200'
Start Time	16:30	End Time 17:00	Comment Routine Rig Service
Start Time	17:00	End Time 00:00	Comment Drill 12.25" Vertical Hole Section f/ 5094' To 5495' (2 Pumps on the hole at 105 a piece, 808 GPM) Present Mwt 9.1 ppg Pump 30 bbl Hi Vis Sweep Every 200'
Report Start Date 10/7/2014		ctivity Summary f/ 5495' to 5656', Rig Service, Drill f/ 5656' to	5701', Work Tight Hole, Drill f/ 5701'to 5936', Rig Service, Drill f/ 5936' to 6324'
Start Time	00:00	End Time 02:30	Comment Drill 12.25" Vertical Hole Section f/ 5495' To 5656' (2 Pumps on the hole at 105 a piece, 808 GPM) Present Mwt 9.1 ppg Pump 30 bbl Hi Vis Sweep Every 200'
Start Time	02:30	End Time 03:00	Comment Rig service
Start Time	03:00	End Time 03:30	Comment Drill 12.25" Vertical Hole Section f/ 5656' To 5701' (2 Pumps on the hole at 105 a piece, 808 GPM) Present Mwt 9.1 ppg Pump 30 bbl Hi Vis Sweep Every 200'
Start Time	03:30	End Time 05:00	Comment (Start) Work stuck pipe @ 5701', jar loose w/100K over string wt. Inspect derrick.
Start Time	05:00	End Time 13:00	Comment Drill 12.25" Vertical Hole Section f/ 5701' To 5936' (2 Pumps on the hole at 105 a piece, 840 GPM) Present Mwt 9.1 ppg Pump 30 bbl Hi Vis Sweep Every 200'
Start Time		End Time	Comment

NEWFIELD

Summary Rig Activity

Start Time	13:30	End Time	00:00	Comment Drill 12.25" Vertical Hole Section f/ 5936' To 6324' (2 Pumps on the hole at 105 a piece, 840 GPM) Present Mwt 9.1 ppg Pump 30 bbl Hi Vis Sweep Every 200'
Report Start Date 10/8/2014		24hr Activity Summary Drill f/ 6324' to 6405', rig servi	ice, Drill f/ 6405' to 7216	6'
Start Time	00:00	End Time	01:30	Comment Drill 12.25" Vertical Hole Section f/ 6324' To 6405' (2 Pumps on the hole at 105 a piece, 840 GPM) Present Mwt 9.1 ppg Pump 30 bbl Hi Vis Sweep Every 200'
Start Time	01:30	End Time	02:00	Comment Rig service
Start Time	02:00	End Time	00:00	Comment Drill 12.25" Vertical Hole Section f/ 6405' To 7216' (2 Pumps on the hole at 105 a piece, 840 GPM) Present Mwt 9.4 ppg Pump 30 bbl Hi Vis Sweep Every 200'
Report Start Date 10/9/2014	10/10/2014	nole @ 4084'. Rig Service,Co		ork tight hole through Trona @ 5720', 5696' and 5668' W/R 90', kill pumps and straight pull with no drag, POOH work tight Dir BHA, Handle Dir BHA. Trpi in hole to 4262', W/R spots at 3862', 4009', 4218'.
Start Time	00:00	End Time	03:00	Comment (Start) Circ BU and mix and pump slug,
Start Time	03:00	End Time	05:30	Comment (Start) Trip for motor, work tight hole through Trona @ 5720', 5696' and 5668'
Start Time	05:30	End Time	06:30	Comment (Start) W/R 90' kill pumps and straight pull through tight spots with no drag Pump trip Slug
Start Time	06:30	End Time	10:00	Comment Trip for motor, work tight hole @ 4084', Monitor well on trip tank
Start Time	10:00	End Time	10:30	Comment Rig Service
Start Time	10:30	End Time	13:00	Comment Cont to trip out of the hole f/3039' to Dir BHA (Montior well on trip Tank)
Start Time	13:00	End Time	20:00	Comment (Start) Handle BHA, Change out directional tools and surface test MWD
Start Time	20:00	End Time	00:00	Comment (Start) TIH to 4262', W/R spots at 3862', 4009', 4218'
Report Start Date 10/10/2014		24hr Activity Summary Frip in hole from 4262' to 721	6. W/R spots at 3862'.	4009', 4218', 4286', 4888', 5390', 5663', 5728' to 7216', Drill f/ 7216' to 7434', Rig Service, Drill f/ 7434' to 7809'.
Start Time	00:00	End Time	12:30	Comment Trip in hole from 4262' to 7216, W/R spots at 4286', 4888', 5390', 5663', 5728', To 7216'
Start Time	12:30	End Time	16:00	Comment (Start) Drill 12.25" Vertical Hole Section f/ 7216' To 7434' (2 Pumps on the hole at 105 a piece, 840 GPM) Present Mwt 9.4 ppg Raise Mwt To 9.8 ppg Pump 30 bbl Hi Vis Sweep Every 200'
Start Time	16:00	End Time	16:30	Comment Routine Rig Service
Start Time	16:30	End Time	00:00	Comment Drill 12.25" Vertical Hole Section f/ 7434' To 7809' (2 Pumps on the hole at 100 a piece, 820 GPM) Present Mwt 9.8 ppg Pump 30 bbl Hi Vis Sweep @ 7550' and 7730'.
Report Start Date 10/11/2014		24hr Activity Summary Drill f/ 7809' to 7996' Rig Serv	rice, Drill f/ 7996' to 854	10', Circ & Pump Hi Vis Sweeps & Raise Mwt f/ 9.8 to 10.1 ppg. TOOH F/8540' - 3390'.
Start Time	00:00	End Time	03:00	Comment Drill 12.25" Vertical Hole Section f/ 7809' To 7996' (2 Pumps on the hole at 100 a piece, 820 GPM) Present Mwt 9.8 ppg Pump 30 bbl Hi Vis Sweep
Start Time	03:00	End Time	03:30	Comment Routine Rig Service

NEWFIELD

Summary Rig Activity

Start Time 03:30	End Time 13:00	Comment Drill 12.25" Vertical Hole Section f/ 7996' To 8383' (2 Pumps on the hole at 100 a piece, 820 GPM) Present Mwt 9.9 ppg Pump 30 bbl Hi Vis Sweep
Start Time 13:00	End Time 13:30	Comment Routine Rig Service
Start Time 13:30	End Time 17:00	Comment Drill 12.25" Vertical Hole Section f/ 8383' To 8540' (2 Pumps on the hole at 100 a piece, 820 GPM) Present Mwt 9.9 ppg Pump 30 bbl Hi Vis Sweep. (TD 12.25" Vertical Hole Section at 5 pm.)
Start Time 17:00	End Time 20:30	Comment Circulate. Build and pump two High Visc. sweeps. Bring MW up to 10.1. Build 50 bbl 12# stay dry pill.
Start Time 20:30	End Time 00:00	Comment (Start) Trip Fill Trip tank, Check flow - No Flow, Pump pill and TOOH to 3390' - monitoring trip tank for fill. Hole taking proper fill.
		ar bushing. Rig Service. Clear rig floor and hold safety meeting w/ Frank's and rig crew. RU and run 9 5/8" casing. RU Halliburton
Start Time 00:00	End Time 02:00	Comment TOOH F/3390' to BHA. Stand back HWDP and jars.
Start Time 02:00	End Time 05:00	Comment Check flow - no flow. Pull rotating head rubber. LD pulse tool, stand back monels, break bit, and LD motor.
Start Time 05:00	End Time 06:00	Comment Pull wear bushing.
Start Time 06:00	End Time 06:30	Comment Routine Rig Service
Start Time 06:30	End Time 08:30	Comment (Start) Casing Operations Held safety meeting with casing crew & Rig crew & Rig up casers.
Start Time 08:30	End Time 19:00	Comment Pick up 2 jt shoe track and Run 9 5/8" 40 # BTC connection, F/ surface t/ 8531 Ran a total of 190 full jts of casing, Centrlizers 1 on the first 3 jts and 1 on every third jt for a total of 8, Fill Pipe Every 2000' Land Casing With 250 K
Start Time 19:00	End Time 20:00	Comment HPJSM w/ Casing Crew And Rig Crew and Rig Down Casing Crews.
Start Time 20:00	End Time 23:30	Comment (Start cementing oper) HPJSM w/ cement and rig crew Off Load Cement into cement silos & R/U cement head & R/U Halliburton equipment, break circulation and circ b/u to remove gas from wellbore (max 150 units of gas). Verify loading of plug
Start Time 23:30	End Time 00:00	Comment Pressure test Halliburton equipment to 5000 psi. Good Test. Start pumping.
	tivity Summary ent, R/D Cementers, L/D Landing Joint, Ins	tall & test Pack Off, N/D Bop, Install Night Cap, Prep to skid & Skid Rig.
Start Time 00:00	End Time 03:00	Comment PJSM w/ Halliburton, test lines w/H2O to 5000 psi, pump 20 bbl diesel, tuned spacer 40 bbl/11.5 ppg, 1st lead cement 35 bbl/12.5 ppg, 2nd lead cement 319 bbl/12.5 ppg. pump tail cement 83 bbl/14ppg, drop plug, displacemnt 636 bbl/12.5 ppg OBM, plug down @ 3:00, 20 bbl diesel and 5 bbl tuned spacer back to surface, 2.5 bbls back and float held. Flush BOP, choke and gas buster,
Start Time 03:00	End Time 04:30	Comment RD Halliburton cementers
Start Time 04:30	End Time 07:00	Comment (Start) NU Well Head PJSM w/ FMC, back out landing jt, P/U joint of 5" DP, install pack-off, presure test to 5000 psi 15 min (verified by NFX company rep).

NEWFIELD

Summary Rig Activity

Start Time	07:00	End Time 12:00	Comment Nipple Down Bop Stack,Flow Line, P/U Bop Stack With BOP Handler,Install Fmc Night cap, and Prep Rig to Skid to the Ute Tribal 14-10-3-3-2W-MW
tart Time	12:00	End Time 13:00	Comment (Start) HPJSM w/ Rig Crews, Fuction Test Walking System for rig skid and Skid Rig.
Report Start Date		Activity Summary	(Start) FIF35W W/ Rig Crews, Fuction rest Walking System for hig skild and skild Rig.
12/2/2014		lk rig to the Ranch 15-10-3-3-2W-UW. NU	and test BOPE.
Start Time	20:00	End Time 22:00	Comment (Start) HPJSM w/ Rig Crews, Fuction Test Walking System for rig skid and Skid Rig from Ute Tribal 14-10-3-3-2W- MW to the Ranch 15-10-3-3-2W-UW
tart Time	22:00	End Time 00:00	Comment (Start) HPJSM & Nipple Up Bop & prepare to test Bop's As Follows, Set Stack on Well Head & Spacer Spool, Torque up Bop, Hook Up Koomey Lines and Function Test Bop's
Report Start Date 12/3/2014		Activity Summary ple Up Bop and test BOP,Install Wear Busl	hing, Cut & Slip Drill Line,
Start Time	00:00	End Time 03:00	Comment Torque up Bop, Hook Up Koomey Lines and Function Test Bop's
Start Time	03:00	End Time 11:30	Comment ((Start) Test BOPE/Csg Rig Up testers & Test BOP's , test TIW, dart valve, Lower Kelly cock valve, and IBOP to 250 psi low 5000 psi high. man IBOP, dart, outside manifold vales, downstream manifold valves to 250 psi 5 min low - 5000 psi 10 min high, test annular 250 psi low 3500 psi high, test upper and lower pipe rams, 250 psi 5 min low - 5000 psi 10 min high, mudline - 250 psi 5 min low 5000 psi 10 min high, Fill csg and test 1500 psi for 30 mins, R/D Testers, Rig Up flow line.
Start Time	11:30	End Time 12:30	Comment HPJSM w/ testers & R/D Testers, Install Wear Bushing
Start Time	12:30	End Time 14:30	Comment Cut & Slip 130' of Drilling Line & Change Out Saver Sub
Start Time	14:30	End Time 16:30	Comment (Start) P/U & M/U Dir Tools
Start Time	16:30	End Time 18:30	Comment Program Dir Tools
Start Time	18:30	End Time 19:00	Comment Install rotating head rubber.
Start Time	19:00	End Time 19:30	Comment PU 1 jt HWDP, Drill n Ream tool, float sub. Surface test directional tools. Tools would not test.
Start Time	19:30	End Time 21:30	Comment Pulser not working. Troubleshoot directional tools. Shallow test again - tools tested good.
Start Time	21:30	End Time 00:00	Comment TIH f/ surface to 4733'.
Report Start Date 12/4/2014	12/5/2014 TIH		2500 psi, Drill Shoe Track f/ 8430 to 8542, , Drill 8.75" hole f/ 8542' to 8552, Conduct Fit Test, Drill 8.75" hole f/ 8552' to Slug, TOOH for RSS failure, c/o RSS, Program tools, TIH to bottom.
Start Time	00:00	End Time 02:30	Comment TIH f/ 4700 to 8430'. Fill pipe every 2000'
Start Time	02:30	End Time 03:00	Comment (Start) Pressure test 9.625" casing with rig pumps @ 2500 psi for 15 mins
Start Time	03:00	End Time 05:00	Comment (Start) Drill shoe track/FIT Tag float collar @ 8431', drill shoe track, tag float shoe @ 8518'. Drilling shoe track per WFT procedures to protect RSS tools.

NEWFIELD

Summary Rig Activity

Well Name: Ranch 15-10-3-3-2W-UW

art Time	05:00	End Time 05:30	Comment Drill 10' of new formation for FIT. Drill 8.75" Hole f/ 8542' To 8552' (2 Pumps on the hole at 80 a piece, 457 GPM) Present Mwt 13.2 ppg
art Time	05:30	End Time 06:30	Comment Drill 10' of new formation for FIT. Drill 8.75" Hole f/ 8542' To 8552' (2 Pumps on the hole at 80 a piece, 457 GPM) Present Mwt 13.2 ppg
art Time	06:30	End Time 08:00	Comment Drill 8.75" Curve Section f/ 8552' To 8570' (2 Pumps on the hole at 80 a piece, 457 GPM) Present Mwt 13.2 ppg
art Time	08:00	End Time 09:30	Comment (Start) UnplannedTrouble Shoot Dir Tools and found that the RSS was not Syncing any Data< Build Trip Slug,
tart Time	09:30	End Time 14:30	Comment Check For Flow (Well Is Static) Pump Trip Slug & Trip Out of the hole f/ 8570' to Surface, Monitor Well On Trip Tank (Well Is taking Proper Fill)
Start Time	14:30	End Time 17:00	Comment Change out Rotary Steerable Tools
start Time	17:00	End Time 19:00	Comment Program Rotary Steerable tools
tart Time	19:00	End Time 19:30	Comment Install rotating head. Comment
tart Time	19:30	End Time 20:00	PU 1 jt HWDP, Drill n Ream tool, float sub. Surface test directional tools. Test good.
Report Start Date	20:00 Report End Date 24hr A	Activity Summary	TIH f/ surface to 8570'. Fill pipe every 3000'.
12/5/2014		8.75" Curve f/ 8570' to 9123', Rig Service, Dr	
tart Time	00:00	End Time 15:30	Comment (Start) Drill 8.75" Curve Section f/ 8570' To 9123' (2 Pumps on the hole at 80 a piece, 457 GPM) Present Mwt 14.3 ppg
tart Time	15:30	End Time 16:00	Comment Rig Service
start Time	16:00	End Time 19:30	Comment Drill 8.75" Curve Section f/ 9123' To 9247' (2 Pumps on the hole at 80 a piece, 457 GPM) Present Mwt 14.5 ppg
Start Time	19:30	End Time 20:00	Comment Survey & Downlink
Start Time	20:00	End Time 00:00	Comment Drill 8.75" Curve Section f/ 9247' To 9367' (2 Pumps on the hole at 85 a piece, 494 GPM) Present Mwt 14.5 ppg
Report Start Date 12/6/2014		Activity Summary Curve f/ 9367' to 9684'. Rig Service, Drill La	
Start Time	00:00	End Time 10:30	Comment Drill 8.75" Curve Section f/ 9367' To 9684' Land Curve @ 9670' (2 Pumps on the hole at 85 a piece, 494 GPM) Present Mwt 14.5 ppg
Start Time	10:30	End Time 11:00	Comment Routine Rig Service
Start Time	11:00	End Time 00:00	Comment Drill 8.75" Lateral with RSS f/ 9684' to 10175', (2 Pumps on the hole at 85 a piece, 495 GPM) Present Mwt 14.7 ppg.

www.newfield.com Page 10/17 Report Printed: 1/21/2016

NEWFIELD

Summary Rig Activity

Report Start Date 12/7/2014	Report End Date	24hr Activity Summary		
	12/8/2014		Service, Drill f/ 10246' to	10622', Rig Service, Drill f/ 10622' to 10909'.
Start Time	12/0/2011	I End Time	0011100; 211111, 10210 10	TComment
	00:00		02:00	Drill 8.75" Lateral with RSS f/ 10175' to 10246', (2 Pumps on the hole at 85 a piece, 495 GPM) Present Mwt 14.7 ppg.
Start Time		End Time		Comment
	02:00		02:30	Rig Service
Start Time	02:30	End Time	16:30	Comment Drill 8.75" Lateral with RSS f/ 10246' to 10622', (2 Pumps on the hole at 95 a piece, 554 GPM) Present Mwt 15.0 ppg.
Start Time	16:30	End Time	17:00	Comment Rig Service
Start Time	10.00	End Time	17.00	Comment
Statt Time	17:00	Liu Tille	00:00	Drill 8.75" Lateral with RSS f/ 10622' to 10909', (2 Pumps on the hole at 95 a piece, 554 GPM) Present Mwt 15.0 ppg.
Report Start Date 12/8/2014	Report End Date 12/9/2014	24hr Activity Summary	Service Drill f/ 10996' to	11066', Change swab on pump #1, Drill f/ 11066' to 11838',
Start Time	12/3/2014	End Time	OCIVIOS, DIIII I/ 10330 10	Comment
Start Time	00:00	End Time	02:30	Drill 8.75" Lateral with RSS f/ 10909' to 10996', (2 Pumps on the hole at 95 a piece, 554 GPM) Present Mwt 15.0 ppg.
Start Time		End Time		Comment
	02:30		03:00	Rig Service
Start Time	03:00	End Time	04:30	Comment Drill 8.75" Lateral with RSS f/ 10996' to 11066', (2 Pumps on the hole at 95 a piece, 554 GPM) Present Mwt 15.0 ppg.
Start Time		End Time		Comment
olari Timo	04:30		05:00	Change swab on pump #1.
Start Time	05:00	End Time	00:00	Comment Drill 8.75" Lateral with RSS f/ 11066' to 11838', (2 Pumps on the hole at 95 a piece, 554 GPM) Present Mwt 15.0 ppg.
Report Start Date 12/9/2014	Report End Date 12/10/2014	24hr Activity Summary Rig Service, Drill f/ 11838' to	12494' Rig Service Drill	Lateral f/ 12494' to 12783'
Start Time	12/10/2011	IEnd Time	12 to thing convice, Billi	Comment
olari Timo	00:00		00:30	Rig Service
Start Time	00:30	End Time	16:30	Comment Drill 8.75" Lateral with RSS f/ 11838' to 12494', (2 Pumps on the hole at 95 a piece, 554 GPM) Present Mwt 15.0 ppg.
Start Time	16:30	End Time	17:00	Comment Rig Service
Start Time		End Time		Comment
	17:00		00:00	Drill 8.75" Lateral with RSS f/ 12494' to 12783', (2 Pumps on the hole at 95 a piece, 554 GPM) Present Mwt 15.0 ppg.
Report Start Date 12/10/2014	Report End Date 12/11/2014	24hr Activity Summary Drill f/ 12783' to 12868', Rig for RSS.	Service, Drill f/ 12868' to	o 13056'. Pump cleanup cycle, Drill f/ 13056' to 13243', Rig Service, Drill f/ 13243' to 13310', RSS failure, Mud up to TOOH
Start Time	00:00	End Time	02:00	Comment Drill 8.75" Lateral with RSS f/ 12783' to 12868', (2 Pumps on the hole at 95 a piece, 554 GPM) Present Mwt 15.0 ppg. Pump 30 ppb LCM Sweeps to help control Losses.

NEWFIELD

Summary Rig Activity

imo		I End Time		Comment
Time	02:00	End Time	02:30	Rig Service
Гime	02.00	End Time	02.00	Comment
	02:30		07:00	Drill 8.75" Lateral with RSS f/ 12868' to 13056', (2 Pumps on the hole at 90 a piece, 525 GPM) Present My
				15.0 ppg. Pump 30 ppb LCM Sweeps to help control Losses.
Time		End Time		Comment
	07:00		09:00	Circulate 2 BU to clean hole and lower ECDs.
t Time		End Time		Comment
	09:00		17:00	Drill 8.75" Lateral with RSS f/ 13056' to 13243', (2 Pumps on the hole at 90 a piece, 525 GPM) Present Mv
				15.0 ppg. Pump 30 ppb LCM Sweeps to help control Losses.
rt Time		End Time		Comment
	17:00		17:30	Rig Service
t Time		End Time		Comment
	17:30		21:00	Drill 8.75" Lateral with RSS f/ 13243' to 13310', (2 Pumps on the hole at 90 a piece, 525 GPM) Present Mv
				15.0 ppg. Pump 30 ppb LCM Sweeps to help control Losses.
				While drilling at 13310', saw pressure spike. Gained 700 psi of off-bottom pressure and lost detection from L
				tools.
t Time		End Time		Comment
	21:00		00:00	(Stop) Unplanned TOOH for RSS failure. Circulate 2 BU and raise MW to 15.2 ppg. Build 17# trip slug.
ort Start Date	Report End Date	24hr Activity Summary		·
12/11/2014	12/12/2014		OOH f/ 13310' to Surf.,	Prog dirc tools, Trouble shoot dirc tools, Prog dirc tools, TIH to 13000', Wash to bottom acquiring resistivity data.
t Time		End Time		Comment
	00:00		00:30	Circulate and raise MW to 15.2 ppg. Build 17# trip slug.
rt Time		End Time		Comment
	00:30		06:30	Flow check, no flow. Pump trip slug. TOOH f/ 13310' to casing shoe. Flow check. No flow. TOOH f/ 8515' to
				Monitoring well on trip tank. Hole taking proper fill.
rt Time		End Time	07.00	Comment
. =	06:30		07:00	Pull rotating rubber.
rt Time	07.00	End Time	00-00	Comment Charles I D D D C C A UEL Assis B D (U.S.) D D A
. T'	07:00	E d Time	09:00	Stand back BHA. LD RSS & HEL tool & P/U new BHA.
t Time	09:00	End Time	11:00	Program directional tools.
t Time	09.00	End Time	11.00	Program directional tools. Comment
n time	11:00	End Time	11:30	Rig service.
t Time	11.00	End Time	11.50	Comment
it fillie	11:30	Liid Tillie	13:00	Trouble shoot LWD Due to lost communication.
t Time	11.50	End Time	13.00	Comment
it fillio	13:00	Liid Tillie	13:30	Program directional tools.
rt Time	10.00	End Time	10.00	Togram and an exterior at two states Comment
	13:30	Ling Time	14:30	Install rotating head.
t Time		End Time		Comment
	14:30		21:30	TIH W/ new BHA F/ Surf to 13000' filling pipe every 3000', Surface test dirc tools test okay.
t Time		End Time		Comment
-	21:30		00:00	Begin washing down f/ 13000' to acquire 300' of resistivity data. Circulating well on buster. Saw 6-8 ft. flare w
				2665u max trip gas. Back pumps off to 350 gpm and pump 30 ppb sweeps to control losses. Diluting MW ba
				15.3 ppg to 15.0 ppg.
		24hr Activity Summary		1 11 0 1129.
ort Start Date	Report End Date			
oort Start Date 12/12/2014	Report End Date 12/13/2014		tv data. Drill F/ 13310' to	o 13372', Survey & Downlink, Drill f/ 13372' to 13450', Downlink, Drill F/ 13450' to 13653', Rig sery Drill F/ 13653' to 141:
	Report End Date 12/13/2014			o 13372', Survey & Downlink, Drill f/ 13372' to 13450', Downlink, Drill F/ 13450' to 13653', Rig serv Drill F/ 13653' to 141:

NEWFIELD

Summary Rig Activity

Well Name: Ranch 15-10-3-3-2W-UW

. =	TE 17:		10
tart Time 00:00	End Time	01:30	Comment Washing down f/ 13184' to 13310' acquire 300' of resistivity data. Back pumps off to 450 gpm and pump 30 ppb sweeps to control losses. MW 15.0 ppg.
tart Time 01:30	End Time	03:00	Comment Drill 8.75" Lateral with RSS f/ 13310' to 13372', (2 Pumps on the hole at 80 a piece, 450 GPM) Present Mwt 15.0 ppg. Pump 30 ppb LCM Sweeps to help control Losses & 4 sx of Baracarb and 1 sx steal seal per hr.
tart Time 03:00	End Time	03:30	Comment Survey & Downlink
tart Time 03:30	End Time	06:00	Comment Drill 8.75" Lateral with RSS f/ 13372' to 13450', (2 Pumps on the hole at 80 a piece, 450 GPM) Present Mwt 15.0 ppg. Pump 30 ppb LCM Sweeps to help control Losses & 4 sx of Baracarb and 1 sx steal seal per hr.
Start Time 06:00	End Time	07:00	Comment Downlink.
Start Time 07:00	End Time	11:30	Comment Drill 8.75" Lateral with RSS f/ 13450' to 13653', (2 Pumps on the hole at 80 a piece, 450 GPM) Present Mwt 15.0 ppg. Pump 30 ppb LCM Sweeps to help control Losses & 4 sx of Baracarb and 1 sx steal seal per hr.
Start Time 11:30	End Time	12:00	Comment Rig service.
itart Time 12:00	End Time	20:30	Comment Drill 8.75" Lateral with RSS f/ 13653' to 14122', (2 Pumps on the hole at 80 apiece, 450 GPM) Present Mwt 15.0 ppg. Pump 30 ppb LCM Sweeps to help control Losses & 4 sx of Baracarb and 1 sx steal seal per hr.
Start Time 20:30	End Time	21:00	Comment Survey & Downlink
tart Time 21:00	End Time	00:00	Drill 8.75" Lateral with RSS f/ 14122' to 14273', (2 Pumps on the hole at 80 apiece, 450 GPM) Present Mwt 15.0 ppg. Pump 30 ppb LCM Sweeps to help control Losses & 4 sx of Baracarb and 1 sx steal seal per hr.
Report Start Date Report End Date 12/13/2014 12/14/20	14 Drill F/ 14273' to 14402', Rig	serv, Drill F/ 14402' to 1	5058', Rig serv, Drill F/ 15058' to 15419',
tart Time 00:00	End Time	02:30	Drill 8.75" Lateral with RSS f/ 14273' to 14402', (2 Pumps on the hole at 80 apiece, 450 GPM) Present Mwt 15.0 ppg. Pump 30 ppb LCM Sweeps to help control Losses & 4 sx of Baracarb and 1 sx steal seal per hr.
Start Time 02:30	End Time	03:00	Comment Rig service.
tart Time 03:00	End Time	16:30	Comment Drill 8.75" Lateral with RSS f/ 14402' to 15058', (2 Pumps on the hole at 80 & 70 SPM, 438 GPM) Present Mwt 15.0 ppg. Bringing mud wt to 14.9 ppg for losses, Pump 30 ppb LCM Sweeps to help control Losses & 4 sx of Baracarb and 1 sx steal seal per hr.
Start Time 16:30	End Time	17:00	Comment Rig service.
Start Time 17:00	End Time	00:00	Comment Drill 8.75" Lateral with RSS f/ 15058' to 15419', (2 Pumps on the hole at 80 & 75 SPM, 453 GPM) Present Mwt 15.0 ppg. Bringing mud wt to 14.9 ppg for losses, Pump 30 ppb LCM Sweeps to help control Losses & 4 sx of Baracarb and 1 sx steal seal per hr.

www.newfield.com Page 13/17 Report Printed: 1/21/2016

NEWFIELD

Summary Rig Activity

Daily Operations				
Report Start Date 12/14/2014	Report End Date 12/15/2014	counter on pump #2.	Service, Drill f/ 15526' to	o 15653'. Fix stroke counter on pump #2, Drill f/ 15653' to 16466', Change swivel packing, Drill f/ 16466' to 16556', fix stroke
Start Time	00:00	End Time	02:00	Drill 8.75" Lateral with RSS f/ 15419' to 15526', (2 Pumps on the hole at 80 & 75 SPM, 453 GPM) Present Mwt 14.9 ppg. Pump 30 ppb LCM Sweeps to help control Losses & 4 sx of Baracarb and 1 sx steal seal per hr.
Start Time	02:00	End Time	02:30	Comment Rig Service
Start Time	02:30	End Time	05:30	Orill 8.75" Lateral with RSS f/ 15526' to 15653', (2 Pumps on the hole at 80 & 75 SPM, 453 GPM) Present Mwt 14.9 ppg. Pump 30 ppb LCM Sweeps to help control Losses & 4 sx of Baracarb and 1 sx steal seal per hr.
Start Time	05:30	End Time	06:00	Comment Fix stroke counter on pump #2.
Start Time	06:00	End Time	20:00	Comment Drill 8.75" Lateral with RSS f/ 15653' to 16466', (2 Pumps on the hole at 80 & 75 SPM, 453 GPM) Present Mwt 14.9 ppg. Pump 30 ppb LCM Sweeps to help control Losses & 4 sx of Baracarb and 1 sx steal seal per hr.
Start Time	20:00	End Time	21:00	Comment Change swivel packing.
Start Time	21:00	End Time	23:00	Comment Drill 8.75" Lateral with RSS f/ 16466' to 16556', (2 Pumps on the hole at 80 & 75 SPM, 453 GPM) Present Mwt 14.9 ppg. Pump 30 ppb LCM Sweeps to help control Losses & 4 sx of Baracarb and 1 sx steal seal per hr.
Start Time	23:00	End Time	00:00	Comment Fix stroke counter on pump #2.
Report Start Date 12/15/2014	Report End Date 12/16/2014	24hr Activity Summary Work on STK counter, Drill F serv, Drill F/ 17305' to 17704		vnlink, Drill F/ 16860' to 17008', Trouble Shoot rod wash, Drill F/ 17008' to 17277', Downlink, Drill F/ 17277' to 17305', Rig
Start Time	00:00	End Time	00:30	Comment Fix stroke counter on pump #2.
Start Time	00:30	End Time	06:30	Comment Drill 8.75" Lateral with RSS f/ 16556' to 16860', (2 Pumps on the hole at 80 & 75 SPM, 453 GPM) Present Mwt 14.9 ppg. Pump 30 ppb LCM Sweeps to help control Losses & 4 sx of Baracarb and 1 sx steal seal per hr.
Start Time	06:30	End Time	07:00	Comment Downlink.
Start Time	07:00	End Time	09:00	Comment Drill 8.75" Lateral with RSS f/ 16860' to 17008', (2 Pumps on the hole at 80 & 75 SPM, 453 GPM) Present Mwt 14.9 ppg. Pump 30 ppb LCM Sweeps to help control Losses & 4 sx of Baracarb and 1 sx steal seal per hr.
Start Time	09:00	End Time	09:30	Comment (Stop Unplanned) Trouble shoot rod wash pump.
Start Time	09:30	End Time	15:00	Comment (Start) Drill 8.75" Lateral with RSS f/ 17008' to 17277', (2 Pumps on the hole at 80 & 75 SPM, 453 GPM) Present Mwt 14.9 ppg. Pump 30 ppb LCM Sweeps to help control Losses & 4 sx of Baracarb and 1 sx steal seal per hr.

NEWFIELD

Summary Rig Activity

Well Name: Ranch 15-10-3-3-2W-UW

art Time		End Time	Comment
	15:00	15:30	Downlink.
art Time	15:30	End Time 16:00	Comment Drill 8.75" Lateral with RSS f/ 17277' to 17305', (2 Pumps on the hole at 80 & 75 SPM, 453 GPM) Present Mwt 14.9 ppg. Pump 30 ppb LCM Sweeps to help control Losses & 4 sx of Baracarb and 1 sx steal seal per hr.
art Time	16:00	End Time 16:30	Comment Rig service.
Time	16:30	End Time 00:00	Comment Drill 8.75" Lateral with RSS f/ 17305' to 17704', (2 Pumps on the hole at 80 & 75 SPM, 453 GPM) Present Mw 14.9 ppg. Pump 30 ppb LCM Sweeps to help control Losses & 4 sx of Baracarb and 1 sx steal seal per hr.
oort Start Date 12/16/2014		Activity Summary F/ 17704' to 18889',	
rt Time	00:00	End Time 00:00	Comment Drill 8.75" Lateral with RSS f/ 17704' to 18889', (2 Pumps on the hole at 80 & 75 SPM, 453 GPM) Present Mw 14.9 ppg. Pump 30 ppb LCM Sweeps to help control Losses & 4 sx of Baracarb and 1 sx steal seal per hr.
oort Start Date 12/17/2014	1 '	Activity Summary Serv, Drill F/ 18889' to 19006', Trouble sho	ot # 2 pump, Drill F/ 19006' to 19045', Survey, Clean up cycle, POOH to shoe to LDDP
t Time		End Time	Comment
. Time a	00:00	00:30	Rig service.
t Time	00:30	End Time 03:00	Drill 8.75" Lateral with RSS f/ 18889' to 19006', (2 Pumps on the hole at 80 & 75 SPM, 453 GPM) Present M 14.9 ppg. Pump 30 ppb LCM Sweeps to help control Losses & 4 sx of Baracarb and 1 sx steal seal per hr.
t Time	03:00	End Time 03:30	Comment (Stop unplanned) Trouble shoot # 2 pump clean out suction screen.
t Time	03:30	End Time 04:00	Comment (Start) Drill 8.75" Lateral with RSS f/ 19006' to 19045', (2 Pumps on the hole at 80 & 75 SPM, 453 GPM) Present Mwt 14.9 ppg. Pump 30 ppb LCM Sweeps to help control Losses & 4 sx of Baracarb and 1 sx steal se
t Time		End Time	Comment
	04:00	04:30	Take survey @ TD 19045 MD @ 04:00 on 12/17/2014. L/D single to work pipe.
Time	04:30	End Time 20:00	Comment (Start) Clean up cycle (Both pumps @ 77 Stks a piece 453 gpm, Topdrive RPM 140) Comment
	20:00	21:30	Flow check, wait on ballooning formation, well static
Time	21:30	End Time 00:00	Comment (Start) POOH to casing shoe to LDDP, attempt to pull on elevators, backream 7 stands f/19045' to 18398', trip elevators f/18398' to 17658'
rt Start Date 12/18/2014		<u> </u>	, pump slug, POOH f/13432' to 8470', LDDP F/ 8470' to BHA, LD BHA, clean floor, PU float sub and TIH
Time	00:00	End Time 04:00	Comment POOH to casing shoe to LDDP, trip out on elevators f/17658' to 13432'
Time	04:00	End Time 04:30	Comment Check flow, pump drying slug
		End Time	Comment

www.newfield.com Page 15/17 Report Printed: 1/21/2016

NEWFIELD

Summary Rig Activity

Start Time	08:00	End Time	18:30	Comment (Start) LDDP F/ 8470' to 2000', Some pipe tight breaking out with rig tongs.
tart Time	40.00	End Time		Comment
tart Time	18:30	End Time	20:00	(Start) Lay down directional BHA
	20:00		00:00	(Start) Clean floor, PU float sub andTripping in hole @ 3660'
teport Start Date 12/19/2014		Activity Summary in to casing shoe, slip and	cut DL, LDDP, TIH, LI	DDP, Pull rotaing rubber, Pull wear bushing, PJSM, RU casing crew, run 5 1/2" casing to 2011'
tart Time		End Time		Comment
tart Time	00:00	End Time	03:00	Trip in hole F/ 3660' to casing shoe
ait Time	03:00	Liid Time	04:30	(Start) slip and cut DL
tart Time	0.4:00	End Time	40.00	Comment (Clart) Divers desire 8 I DDD 5 (0446) to 400)
tart Time	04:30	End Time	12:00	(Start) Pump dry job & LDDP F/ 8446' to 180',
art Time	12:00	End Time	13:30	Trip in hole with remaining 2500' of DP in derrick.
tart Time	42.20	End Time	47.00	Comment
tart Time	13:30	End Time	17:00	LDDP F/ 2700' To Surface. Some pipe tight breaking out with rig tongs pipe broke at about 43K Comment
art Time	17:00	End Time	17:30	Pull rotaing head rubber
tart Time	47.00	End Time	40.00	Comment
art Time	17:30	End Time	18:00	Pull wear bushing.
ait fille	18:00	Liid Time	20:30	(Start) PJSM w/Franks, Halliburton, thread rep and rig crew, RU casing crew, CRT and torque turn
tart Time	20:30	End Time	00:00	Comment (Start) Make Up Float shoe and Float And test Float equipment, Run 5.5", 20# P-110 XP BTC casing. Make casing up @ 15 RPM'S Per Deep Well thread rep.Run casing F/ surface to 2011', 1- Float shoe, 1 jt csg, 1 Float collar, 1 jt csg, 1 Landing collar, 2 jts csg, 1 RSI, 1 jt csg. RSI, 43 full jts, installing Schlumberger receptical +/-every 200', solid body centralizer on evey joint for 253 & On every 3rd joint for 4, Filling pipe every 2000'.
eport Start Date	1 '	Activity Summary	404! Cira Dima un @	Abo Dun 5 4/01 agains from 04041 to land at 400071
12/20/2014 art Time	12/21/2014 Run	15 1/2 casing from 2011 8	494, Circ Birns up @ :	shoe, Run 5 1/2" casing from 8494' to land at 19027' IComment
	00:00		08:00	Cont to Run Casing As Follows, Run 5.5", 20# P-110 XP BTC casing. Make casing up @ 15 RPM'S Per Deep Well thread rep.Run casing F/ 2011' to 8494', 1- Float shoe, 1 jt csg, 1 Float collar, 1 jt csg, 1 Landing collar, 2 jt csg, 1 RSI, 1 jt csg. RSI, 68 full jts csg, 1 marker jt, 133 full jts,1 marker jt, 208 full joints, installing Schlumberger receptical +/- every 200' f/ 18552' to 9820' (36 total) Filling pipe every 2000'.
art Time	08:00	End Time	10:00	Comment Circulate BU @ 8494' @ 5.0 bbm, Max Bottoms up gas 239 Units, Pull Rotating Rubber
art Time		End Time		Comment
	10:00		22:30	Cont to Run Casing As Follows, Run 5.5", 20# P-110 XP BTC casing. Make casing up @ 15 RPM'S Per Deep Well thread rep.Run casing F/ 8484' to 19027', 1- Float shoe, 1 jt csg, 1 Float collar, 1 jt csg, 1 Landing collar, 2 jts csg, 1 RSI, 1 jt csg. RSI, 68 full jts csg, 1 marker jt, 128 full jts,1 marker jt, 213 full joints, total of 457 full jts, installing Schlumberger receptical +/- every 200' f/ 18552' to 9820' (36 total) Filling pipe every 2000'. 200', solid body centralizer on evey joint for 253 & On every 3rd joint for 4, Filling pipe every 2000'.
art Time	00:00	End Time	00.00	Comment
art Time	22:30	End Time	23:00	Install landing assembly and land at 19027'
an IIIIE	23:00	Liiu Tillie	00:00	Rig down CRT tool and rig up rotating cementing head and Halliburton
eport Start Date	Report End Date 24hr /	Activity Summary		

NEWFIELD

Summary Rig Activity

Start Time		End Time	Comment
	00:00	04:30	Rig up rotating cementing head, rotate 10 RPM, circulate BU @ 230 GPM and RU Halliburton
Start Time	04:30	End Time 12:00	Comment (Start) Cementing Operations Cement 5.5" Casing As Follows. Pressure test lines to 9500 pi, drop bottom plug, Pump 40 bbls of tuned spacer III @ 15.4 ppg @ 4 BPM, mix and pump 350 bbls of Tergo Vis (1390 sks) 15.4 ppg, @ 5 bpm, mix and pump 602 bbls of primary cement (2195 sks) 15.7 ppg 1.54 yield, 6.34 gal / sk, @ 5 BPM Shut down drop plug pump 421.5 bbls of KCL+Biocide displacement final pump rate 3 BPM, At 350 bbls displacement away psi @ 5840 @ 360 bbls away psi at 5590 @ 370 away psi @ 5910 @ 380 away psi at 5460 and psi built to 5600 at 1.5 bbls over displacement final circulating pressure 5600 psi, did not bump plug, 24 bbl flow back, floats did not hold, Pumped back calculated displacement of 420 bbls @ 5950 psi Full Returns During Cement Job & Got Back 40 bbls of Tuned Spacer, During cmt job rotated casing @ 10 RPMS & 20k Torque had Interment Rotation During Cement Displacement.(Rotation Stop @ 552 bbls of Cement pumped and Interment rotation started again @ 270 bbls Away on displacement rotation stopped) Land casing with 70K string wt
Start Time	12:00	End Time 00:00	Comment (Stop unplanned) Pressure up to 5600 psi (FCP) Hold psi on Halliburton pump truck & Monitor Psi, 13:00 -15:00 7600 psi, bleed 2.5 bbl to 5600 psi 15:00- 15:10 6500 psi bleed 1.5 bbl to 5600 psi 15:10- 15:15 5900 psi bleed 1.5 bbl to 5600 psi 15:15- 15:45 5900 psi bleed .5 bbl to 5560 psi 15:45- 16:15 5909 psi bleed .5 bbl to 5550 psi 15:15- 17:15 5900 psi bleed .5 bbl to 5500 psi 15:15- 17:15 5900 psi bleed .5 bbl to 5500 psi 17:15- 00:00 5500 psi holding. Started cleaning mud pits @ 15:00 on
Report Start Date 12/22/2014	Report End Date 24hr Activity S 12/23/2014 Release pr	,	Install pack off and test, install BPV, Nipple down BOPS, Nipple up night cap, Clean mud pits, prep rig for rig down.
Start Time	00:00	End Time 00:30	Comment Release pressure from casing, got back 7 bbl, flow stopped, Cleaning mud pits
Start Time	00:30	End Time 02:00	Comment RD Halliburton, Franks cementing head and landig jt, Cleaning mud pits
Start Time	02:00	End Time 08:00	Comment Install and test pack off and BPV, Test pack off to 5000 psi held for 15 min test good, Nipple up night cap & test to 10000' psi test good, Cleaning mud pits.
Start Time	08:00	End Time 16:00	Comment Prep rig for rig move & R/D Floor bells elevators, mud lines steam lines, Lay down flow line, Mud lines lay down ST-80, R/D catwalk, Pumps, Clean mud & Clean Harbor pits. Hauled 8 loads Release rig @ 16:00 on 12/22/2014. 2 Bed trucks, 2 Haul trucks, 2 Forklifts, 2 Swampers, 1 Safety, 1 Truck pusher, Trucks showed up @ 07:00 12/22/2014, 1 Crane, 3 Riggers, Crane on location @ 09:00 12/22/2014.